

HCOMM Reference Manual

Document Number: 1000-2984 Document Revision: 0.3.2 Date: March 5, 2014

Table of Contents

L	IST OF	FIGURES	4
1	I	NTRODUCTION	5
	1.1	Reserved Values	5
	1.2	Revision History	
_			
2		ENSORS	
	2.1.1	Linear Accelerometers	
	2.1.2	8 (- 9 (- 9)	
	2.1.3	0	
	2.1.4 2.1.5	Ambient Light Sensors Pressure Sensors	
	2.1.5	Proximity Sensors	
	2.1.0		0
3	Н	COMM HUB OPERATION	7
	3.1	Operating Modes	7
	3.1.1	Full Motion	
	3.1.2	Wake-on-Motion	
	3.1.3	Sleep	7
	3.1.4	Notify-on-Motion	7
	3.1.5	Full Motion On	7
	3.2	Host Interfaces	7
	3.3	Device Firmware Upgrade	8
			0
4		COMM OVERVIEW	
5		COMM PACKETS	
	5.1	Inbound Packets	
	5.1.1		
	5.1.2		
		1.2.1 FRS Write Response (Subclass 0x06)	
		1.2.2 Freespace Data Mode Control V2 Response (Subclass 0x14)	
	5.1.3	1.2.3 Sensor Period Response (Subclass 0x17)	
	-	FRS Read Response (Subclass 0x08)Product ID Response (Subclass 0x09)	
	5.1.4		
	0.11.	1.4.1 BLE FRS Read Response (Subclass 0x15)	
		1.4.1 BLE PROVIDE Response (Subclass 0x15) 1.4.2 BLE Product ID Response (Subclass 0x16)	
	5.1.5	MotionEngine Output (Class 0x26)	
	5.1.6		
	5.1.7		
	5.1.8		
	5.1	1.8.1 DCE Out V4 - AG (Subclass 0x00)	
	5.1	1.8.2 DCE Out V4 – M (Subclass 0x01)	
	5.2	Outbound Packets	
	5.2.1	DataOut Packet (Class 0x07)	
	-	2.1.1 FRS Write Request (Subclass 0x06)	
	-	2.1.2 FRS Write Data (Subclass 0x07)	
		2.1.3 FRS Read Request (Subclass 0x08)	
	5.2	2.1.4 Product ID Request (Subclass 0x09)	
	5.2	2.1.5 Activity Classification Notification (Subclass 0x12)	44
	5.2	2.1.6 Freespace Data Mode Control V2 Request (Subclass 0x14)	44

	5.2.1.7 Sensor Period Request (Subclass 0x16)	
	5.2.1.8 Button Motion Suppression Request (Subclass 0x17)	
6	FSP FLASH RECORD SYSTEM	
	6.1 Record Types	
	6.2 Device Records	
	6.2.1 Tracking Number6.2.2 Static Calibration Data	
	6.2.3 Enable	
	6.2.4 Product Records	
	6.2.4.1 MotionEngine Orientation	
	6.2.4.2 MotionEngine Power Management	
	6.2.4.3 MotionEngine Angular Position Smoothing	
7	REFERENCES	53
8	LEGAL STATEMENTS	54

List of Figures

Figure 1: Document History	5
Figure 2: Summary of Operating Modes	7
Figure 3: HCOMM Packet Format	9
Figure 4: Mouse Movement Packet	10
Figure 5: DataIn Packet	11
Figure 6: FRS Write Response Packet	11
Figure 7: Freespace Data Mode Control V2 Response Packet	12
Figure 8: Sensor Period Response	
Figure 9: DataInLong Packet	14
Figure 10: FRS Read Response Packet	15
Figure 11: Product ID Response Packet	16
Figure 12: DataInBLE Packet	
Figure 13: BLE FRS Read Response Packet	17
Figure 14: BLE Product ID Response Packet	
Figure 15: MotionEngine Output Packet, Format 0	21
Figure 16: MotionEngine Output Packet, Format 1	24
Figure 17: MotionEngine Output Packet, Format 2	26
Figure 18: MotionEngine Output Packet, Format 3	29
Figure 19: MotionEngine Output Packet, Format 4	34
Figure 20: Channel ID Definitions for Format 4	
Figure 21: DCE Out V2 Packet	
Figure 22: DCE Out V3 Packet	
Figure 23 - DCE Out V4 Packet	40
Figure 24 - DCE Out v4 Class	
Figure 25: DCE Out V4 Packet	41
Figure 26: DataOut Packet	
Figure 27: FRS Write Request Packet	42
Figure 28: FRS Write Data Packet	43
Figure 29: FRS Read Request Packet	43
Figure 30: Product ID Request Packet	
Figure 31: Activity Classification Notification	
Figure 32: Freespace Data Mode Control V2 Request Packet	
Figure 33: Sensor Period Request	
Figure 34: Button Motion Suppression Request	
Figure 35: FSP Record Types	
Figure 36: Tracking Number Record	49
Figure 37: MotionEngine Orientation Record	
Figure 38: MotionEngine Power Management Record	
Figure 39: Angular Position Smoothing Record	52

1 Introduction

CEVA's Hillcrest Labs business unit's Freespace® MotionEngineTM is a complete solution for the creation of in-air pointing and motion control devices for a broad range of applications including pointing remote controls, body motion trackers, head mounted displays (HMDs), and mobile and tablet sensor fusion products. The solution includes the core motion sensing technology, multiple reference designs, development tools, manufacturing solutions, design expertise and intellectual property necessary to develop and produce superior motion control products.

An HCOMM hub is an implementation of Hillcrest's Freespace motion control solutions. An FSM-9 is an example of an HCOMM hub. An HCOMM hub contains both MotionEngine[®] and MotionHub. MotionEngine is Hillcrest's proprietary motion and sensor processing software. MotionHub is Hillcrest's sensor management software. HCOMM is the messaging protocol used to communicate with and control an HCOMM hub. An HCOMM hub is incorporated into a larger product and controlled by the processor of that product.

1.1 **Reserved Values**

Revision History

1.2

All values marked "Reserved", "reserved", "RESERVED" or some abbreviation thereof must be set to 0 when they are produced. All such reserved values must be ignored when they are consumed.

Description

All unspecified values of parameters are reserved and must not be used.

Povision

Revision	Date	Description
0.3	x	Clarified sensor period request in section 5.2.1.7. Added clarifications to the MotionEngine power management record in section 6.2.4.2. Added defaults values for angular position smoothing record values in section 6.2.4.3. Added MotionEngine Output Format 3 to section 5.1.5. Changed reference to RF-on-motion to Notify-on-motion. In section 6.2.4.3 changed parameter description from signed to unsigned. Added default values for parameters to sections 6.2.4.1 and 6.2.4.2. Clarified meanings of activity classification and power management flags in section 5.1.5. Added MotionEngine Output Format 4 to section 5.1.5. Added fusion tick to MotionEngine Output Format 2 in section 5.1.5. Fixed scale factor for angular position in MEOut Format 1 in Figure 16. Added tilt detector.
0.2	03/13/2013	Added FRS records in section 6.2.4. Revised DCE Out V4 packet in section 5.1.8.
0.1	02/08/2013	First draft.

Figure 1: Document History

2 Sensors

MotionEngine works with a variety of sensors including accelerometers, gyroscopes, magnetometers, ambient light sensors, pressure sensors and proximity sensors.

2.1.1 Linear Accelerometers

MotionEngine uses a three axis linear accelerometer. The accelerometer is used for inclinometer functions, orientation compensation, wake-on-motion and other fusion operations. MotionEngine works with a variety of accelerometers. It uses calibration data provided at system design time or during production to obtain the best performance from the actual accelerometer being used.

2.1.2 Angular Velocity Sensors (Gyroscopes)

MotionEngine uses a three axis angular velocity sensor or gyroscope. The gyroscope measures rotation about the X, Y and Z axes of the hub. Angular velocity is an input used to produce cursor motion output, general motion output and other fused outputs. MotionEngine works with a variety of gyroscopes. It uses calibration data provided at system design time or during production to obtain the best performance from the actual gyroscope being used.

2.1.3 Magnetometers

MotionEngine uses a three axis magnetometer. The magnetometer measures the Earth's magnetic field and is used to determine absolute orientation. Absolute orientation can be thought of as determining which direction is north. MotionEngine works with a variety of magnetometers. It uses calibration data provided at system design time to obtain the best performance from the actual magnetometer being used.

2.1.4 Ambient Light Sensors

Future feature

2.1.5 Pressure Sensors

Future feature

2.1.6 Proximity Sensors

Future feature

3 HCOMM Hub Operation

This section describes the operating modes of an HCOMM hub.

3.1 Operating Modes

The FSP has several operating modes for power management. They are summarized in Figure 2.

Mode	Sensors	Outputs		
Full Motion (FM)	On	Motion		
Wake on Motion (WM)	Accelerometer in WM	Activity classification		
Sleep(SL)	Off	None		
Full Motion ON (FMON)	On	Motion		
Notify on Motion (NM)	Accelerometer in WM	Activity classification		

Figure 2: Summary of Operating Modes

Operating modes are changed by the FSP power management system or by a control packet from the host.

3.1.1 Full Motion

Full motion mode is used when motion output is desired. While in full motion, if the hub detects that it has becomes motionless (still) it will enter wake-on-motion.

3.1.2 Wake-on-Motion

In wake on motion mode, the accelerometer is used to detect large movements, such as a user picking up the device from a table, and causes the hub to enter full motion mode. Wake on motion is a low power mode with minimal motion sensing.

3.1.3 Sleep

Sleep mode is a very low power mode. No motion sensing is performed in sleep mode.

3.1.4 Notify-on-Motion

In NM on motion mode, the accelerometer is used to detect large movements, such as a user picking up the device from a table. The host processor is notified when motion is detected. Unlike WM, the hub remains in NM even after detecting motion. It is the responsibility of the host to change the operating mode of the hub when it is in NM. NM on motion is a low power mode with minimal motion sensing.

3.1.5 Full Motion On

Full motion on mode is used when motion output is desired, even if the hub detects that it has becomes motionless (still). The hub will not transition from FMON into WM. It is the responsibility of the host to change the operating mode of the hub when it is in FMON.

3.2 Host Interfaces

The host device connects to a hub via a physical interface. Supported interfaces include SPI and USB.

The hub exchanges packets with a host using the Hillcrest communication protocol (HCOMM). Over SPI it uses HCOMM SPI, and over USB it uses HCOMM USB. The hub sends packets formatted as USB HID reports for mouse and vendor-specific usages.

3.3 Device Firmware Upgrade

The hub supports in-field device firmware upgrade (DFU). DFU can be used to add new features and fix bugs. New firmware is provided to the hub in the form of an encrypted binary image.

4 HCOMM Overview

The Hillcrest communication protocol (HCOMM) provides a data passing scheme that can be used over all physical interfaces, including the system host.

As HCOMM packets are transported through a system they may transition into another system domain, such as USB HID. The HID domain has requirements that packets of a given class contain a class-specific HID report ID and have a consistent, pre-determined length. See Reference 1 and Reference 2 for more information regarding USB HID.

HCOMM packets are structured in such a manner as to be compatible with HID. The HCOMM class is synonymous with the HID report ID. HCOMM packets may need to be lengthened when transitioning into the HID domain and may need to be shortened when transitioning from the HID domain, as is the case if the stated length of the HCOMM packet is less than the maximum length of the class of the packet.

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0		Class							
1		Length							
2	Reserved	Reserved Reserved Destination							
3	Reserved	Reserved Reserved Source							
4-N		Data							

The format of HCOMM packets is shown in Figure 3.

Figure 3: HCOMM Packet Format

Class:	indicates what sort of information this packet contains; this field is synonymous with the HID report ID
Length:	the length of the bytes to be sent using HCOMM, including the Class and Length bytes; all bytes specified by the length are significant and data-bearing. This length may be less than or equal to the maximum class length.
Destination:	contains the address of the packet recipient
Source	contains the address of the packet originator
Data	payload data

The addresses used by HCOMM packets are:

- 0 host. This is typically a PC but could be the control processor connected to the hub
- 1 dongle.
- 4 hub.

5 HCOMM Packets

This section describes all HCOMM packet payloads.

All fields greater than 8 bits wide use network byte ordering (little-endian byte ordering) unless otherwise specified.

5.1 Inbound Packets

This section covers packets that are sent from a hub to a host.

5.1.1 Mouse Packet (Class 0x02)

This packet is a HID mouse packet with 8 buttons and a scroll wheel.

		Bit							
Byte	7	6	5	4	3	2	1	0	
0		Class = 0x02							
1		Length							
2		Destination							
3				Sol	irce				
4	Button 8	Button 8 Button 7 Button 6 Button 5 Button 4 Button 3 Button 2 Button 1							
5		Delta X							
6		Delta Y							
7				Delta	Wheel				

Figure 4: Mouse Movement Packet

Button n:	0 – not pressed
	1 – pressed
Delta X:	change in pointer location along the x-axis in dimensionless units
	called mickeys. X positive moves the pointer right.
Delta Y:	change in pointer location along the y-axis in dimensionless units
	called mickeys. Y positive moves the pointer down.
Delta	scroll wheel motion in detents (up is positive).
wheel:	

5.1.2 DataIn Packet (Class 0x05)

This packet is used as a container for command, control, status, testing and debugging information. Each packet contains a subclass. The subclass determines the type of

information carried by the DataIn packet. All subclass values are reserved with the exception of those described in this section.

		Bit								
Byte	7	7 6 5 4 3 2 1 0								
0		Class = 0x05								
1		Length								
2		Destination								
3		Source								
4		Subclass								
5-11				Pay	rload					

Figure 5: DataIn Packet

Subclass:	identifies the specific type of information being carried within the
	DataIn packet

Payload: the remaining report payload, up to 7 bytes

5.1.2.1 FRS Write Response (Subclass 0x06)

This packet is sent to indicate status of the write operation of the flash record system (FRS). See section 6 for details of the flash record system.

		Bit								
Byte	7 6 5 4 3 2 1									
0		Class = 0x05								
1		Length								
2		Destination								
3		Source								
4		Subclass = 0x06								
5		Status/Error								
6		Word Offset LSB								
7				Word Of	fset MSB					

Figure 6: FRS Write Response Packet

Status/Error:

- 0 word received
- 1 unrecognized FRS type
- 2 busy
- 3 write completed
- 4 write mode entered or ready
- 5 write failed
- 6 data received while not in write mode
- 7 invalid length
- 8 record valid (the complete record passed internal validation checks)

9 – record invalid (the complete record failed internal validation checks)

10 – device error (DFU flash memory device unavailable)

Word Offset: the number of words offset from the beginning of the record

5.1.2.2 Freespace Data Mode Control V2 Response (Subclass 0x14)

This packet reports the configuration of the generation of Freespace motion packets and the operating mode of the device.

					Bit						
Byte	7	7 6 5 4 3 2 1 0									
0				Class	s = 0x05						
1				Le	ength						
2				Des	tination						
3				So	ource						
4				Subcla	ss = 0x14						
5	Oper	rating Mode A	ctual	Output Status	Operat	ting Mode Rec	uested	Operating Status			
6				Packe	et Select						
7				Form	at Select						
8	FF7	FF6	FF5	FF4	FF3	FF2	FF1	FF0			
9-11				Res	served						

Figure 7:	Freespace	Data Mode Control	V2 Response Packet
-----------	-----------	--------------------------	--------------------

Operating Status	0 - indicates a response to an operating mode update request $1 - indicates$ a response to an operating mode status request
Operating Mode Requested	Requests a change to the specified operating mode battle request Requests a change to the specified operating mode. The hub will enter the requested mode if allowed. The hub may leave the requested operating mode autonomously. 0 – Full Motion 1 – Sleep 2 – Deprecated 3 – Deprecated 4 – Full Motion On 5 – Notify-on-Motion
Output Status	 0 - indicates a response to a packet and format selection update request 1 - indicates a response to a packet and format selection status request
Operating Mode Actual	The operating mode the device is currently in. The actual operating mode is reported independently of the requested operating mode. The actual operating mode reports the operating modes discussed in section 3.1. 0 – Full Motion 1 – Wake-on-Motion 2 – Reserved 3 – Sleep 4 – Reserved 5 – Notify-on-Motion
Packet select	Select the output packet sent by the FSP to report motion data. 0 - none 1 - Mouse

	2 – Reserved
	3 – Reserved
	4 – Reserved
	5 - DCE out
	6 – Reserved
	7 – SuperSDA
	8 – MotionEngine Output
	9 – MotionEngine Output and Mouse
	10-255 – reserved
Format Select	Select the format of the MotionEngine Output packet. See
	5.1.5 for details.
FF7 - FF0	Format Flags – used to enable various portions of a
	MotionEngine Output packet. See 5.1.5 for details.

5.1.2.3 Sensor Period Response (Subclass 0x17)

This packet reports the sample period for a given sensor, including the sensor fusion operation. Sensor fusion is the operation of producing a motion output by using the inputs from several sensors. Sensor fusion may be performed at a rate different from the sample period of the sensors.

					Bit					
Byte	7	7 6 5 4 3 2 1 0								
0		Class = 0x05								
1		Length								
2				Des	tination					
3				So	ource					
4				Subcla	ss = 0x17					
5				Res	served					
6				Se	ensor					
7				Res	served					
8				Peri	od LSB					
9										
10										
11				Perio	od MSB					

Figure 8: Sensor Period Response

Sensor

The sensor for which the period is being reported.

- 0 accelerometer
- 1 gyroscope
- 2 magnetometer
- 3 ambient light sensor
- 4 pressure sensor
- 5 proximity sensor
- 6 sensor fusion
- 7 step detector
- 8 tap detector
- 9 humidity sensor

- 10 ambient temperature sensor
- 11 significant motion detector
- 12 shake detector
- 13 screen rotation accelerometer
- 14 flip detector
- 15 pickup detector
- 16 stability detector
- 17 personal activity classifier
- 18 sleep detector
- 19 gravity
- 20 linear acceleration
- 21 rotation vector
- 22 game rotation vector
- 23 geo magnetic rotation vector
- 24 step counter
- 25 gyroscope uncalibrated
- 26 magnetometer uncalibrated

Sensor period in microseconds.

- 27-tilt detector
- 28 pocket detector
- 29 circle detector
- 30-255 reserved

5.1.3 DataInLong Packet (Class 0x06)

This packet is used as a container for command, control, status, testing and debugging information. This packet is used when more data needs to be sent than the DataIn packet can accommodate. The DataIn packet is more power efficient, however, and can be sent more reliably over certain communication links, such as an RF link. Each packet contains a subclass. The subclass determines the type of information carried by the DataInLong packet. All subclass values are reserved with the exception of those described in this section.

	Bit											
Byte	7	7 6 5 4 3 2 1 0										
0		Class = 0x06										
1		Length										
2				Desti	nation							
3				So	urce							
4		Subclass										
5-21				Pay	/load							

Figure 9: DataInLong Packet

Subclass: identifies the specific type of information being carried within the DataInLong packet

Payload: the remaining report payload, up to 17 bytes

Period

FRS Read Response (Subclass 0x08) 5.1.3.1

This packet is sent to convey an FRS record or portion of a record.

				В	it					
Byte	7	6	5	4	3	2	1	0		
0		Class = 0x06								
1				Ler	igth					
2				Desti	nation					
3				Soι	irce					
4				Subclas	s = 0x08					
5		Data I	_ength			Sta	atus			
6				Word Of	fset LSB					
7				Word Of	iset MSB					
8-19				Da	ata					
20				FRS Ty	pe LSB					
21				FRS Ty	pe MSB					

Figure 10: FRS Read Response Packet

Data Length:	the number of data words contained within the message, typically 3
	words.
Status:	0 - no error
	1 – unrecognized FRS type
	2 – busy
	3 – read record completed
	4 – offset out of range
	5 – record empty
	6 – read block completed (if block size requested)
	7 – read block completed and read record completed (if block size requested)
	8 – device error (DFU flash memory device unavailable)
Word Offset:	the number of words offset from the beginning of the record
Data:	between 0 and 3 32-bit words of data from and FRS record.
FRS Type:	indicates to which type of FRS record the data belongs (see
JF	Section 6.1)

5.1.3.2 **Product ID Response (Subclass 0x09)**

The product ID response carries information that identifies software running on the FSP and FSP unique ID information. This packet is sent automatically when an FSP boots and in response to a product ID request (Section 5.2.1.4).

		Bit									
Byte	7	6	5	4	3	2	1	0			
0		Class = 0x06									
1				Len	gth						
2				Destin	ation						
3				Sou	rce						
4				Subclass	= 0x09						
5	InvalidSN	Startup			Device	e Class					
6				SW Versio	on Major						
7				SW Versio	on Minor						
8				SW Part Nu	mber LSB						
9				SW Part N	umber						
10				SW Part N	umber						
11				SW Part Nu	mber MSB						
12				SW Build Nu	umber LSB						
13				SW Build N	lumber						
14				SW Build N	lumber						
15				SW Build Nu	mber MSB						
16				Serial Nun	nber LSB						
17				Serial Nu	mber						
18				Serial Nu	mber						
19				Serial Nurr	ber MSB						
20				SW Version	Patch LSB						
21				SW Version	Patch MSB						

Figure 11: Product ID Response Packet

InvalidSN:	0 –serial number is valid
	1 – serial number is invalid; retry until valid
Startup:	0 – device has not just started up
	1 - device has just started up. This bit self clears after the first
	time this message is sent.
Device Class:	0 – device type not known
	1 – non-data-generating device
	2 – data-generating device
	3 – reserved
SW Version:	software version major (8 bits).minor (8 bits).patch (16 bits)
SW Part Number:	32-bit value representing the software part number
SW Build Number:	32-bit software build number
Serial Number:	32-bit serial number. Also referred to as a tracking number.

5.1.4 DataInBLE Packet (Class 0x08)

This packet is used as a container for command, control, status, testing and debugging information. This packet is sized to fit in a Bluetooth Low Energy packet payload. Each packet contains a subclass. The subclass determines the type of information carried by the DataInBLE packet. All subclass values are reserved with the exception of those described in this section.

		Bit										
Byte	7	7 6 5 4 3 2 1 0										
0		Class = 0x08										
1		Length										
2				Desti	nation							
3				So	urce							
4		Subclass										
5-19				Pay	/load							

Figure 12: DataInBLE Packet

Subclass: identifies the specific type of information being carried within the DataInBLE packet

Payload: the remaining report payload, up to 15 bytes

5.1.4.1 BLE FRS Read Response (Subclass 0x15)

This packet is sent to convey an FRS record or portion of a record.

		Bit								
Byte	7	7 6 5 4 3 2 1 0								
0				Class	= 0x08					
1				Ler	igth					
2				Desti	nation					
3				Sou	irce					
4				Subclas	s = 0x15					
5		Data I	_ength			Sta	atus			
6				Word Of	fset LSB					
7				Word Of	iset MSB					
8-15				Da	ata					
16-17				Rese	erved					
18				FRS Ty	pe LSB					
19				FRS Ty	pe MSB					

Figure 13: BLE FRS Read Response Packet

Data Length: the number of data words contained within the message.

Status:

0 - no error

- 1 unrecognized FRS type
- 2 busy
- 3 read record completed
- 4 offset out of range
- 5 record empty
- 6 read block completed (if block size requested)
- 7 read block completed and read record completed (if block size requested)
- 8 device error (DFU flash memory device unavailable)
- Word Offset:the number of words offset from the beginning of the recordData:between 0 and 2 32-bit words of data from and FRS record.FRS Type:indicates to which type of FRS record the data belongs (see
Section 6.1)

5.1.4.2 BLE Product ID Response (Subclass 0x16)

The product ID response carries information that identifies software running on the FSP and FSP unique ID information. This packet is sent automatically when an FSP boots and in response to a product ID request (Section 5.2.1.4).

	Bit								
Byte	7	6	5	4	3	2	1	0	
0				Class =	0x08				
1				Lenç	gth				
2				Destin	ation				
3				Sou	ce				
4				Subclass	= 0x16				
5	InvalidSN	Startup			Device	e Class			
6				SW Versio	on Major				
7				SW Versio	on Minor				
8		SW Part Number LSB							
9		SW Part Number							
10				SW Part N	umber				
11				SW Part Nu	mber MSB				
12				Serial Nun	iber LSB				
13				Serial Nu	mber				
14		Serial Number							
15				Serial Num	ber MSB				
16				SW Build Nu	Imber LSB				
17				SW Build Nu	mber MSB				
18				SW Version	Patch LSB				
19			S	SW Version	Patch MSB				

Figure 14: BLE Product ID Response Packet

InvalidSN:	0 – serial number is valid
	1 – serial number is invalid; retry until valid
Startup:	0 – device has not just started up
	1 - device has just started up. This bit self clears after the first
	time this message is sent.
Device Class:	0 – device type not known
	1 – non-data-generating device
	2 – data-generating device
	3 – reserved
SW Version:	software version major (8 bits).minor (8 bits).patch (16 bits)
SW Part Number:	32-bit value representing the software part number
SW Build Number:	16-bit software build number
Serial Number:	32-bit serial number. Also referred to as a tracking number.

5.1.5 MotionEngine Output (Class 0x26)

This packet conveys the Motion Engine output. It has a flexible format. Format selection is controlled by the Data Mode Control V2 Request. See 5.2.1.6. The format flags bits are used to enable various portions of the packet. If a particular flag is set then that portion of

the output is present. If it is not set then that portion is not present. If a portion of the output is not present then the remaining fields are moved ahead in the packet to fill in the gap left by the missing portion. In other words, the packet is packed. Trailing zeros are omitted. By using the format flags, an application can tailor the MotionEngine output to best suit its needs as well as minimize HCOMM packet sizes and communication times. Some formats and some feature flags may not be supported on a specific platform. Also, some platforms may have a size limitation and therefore are unable to support the full 54 bytes of the MotionEngine Output message. If more feature flags are enabled than will fit into a platform's message size limit then only the ones that fit will actually be set. The others will be ignored. The priority of setting flags starts from FF0 (highest) down to FF6 (lowest).

Motion outputs are formatted as 16-bit, 2's complement, fixed-point. The binary point of each type of data is different and is specified in the field descriptions below. The binary point is indicated by Qn where n is the number of fractional bits. Thus, Q10 indicates 1 sign bit, 5 integer bits and 10 fractional bits.

The Format 0 packet is shown below.

	Bit									
Byte	7	6	5	4	3	2	1	0		
0				Class	= 0x26					
1	Length									
2				Desti						
3					urce					
4				1	Select = 0		I			
5	FF7	FF6	FF5	FF4	FF3	FF2	FF1	FF0		
6				Sequence N	lumber LSE	3				
7 8				•						
8 9				Sequence N	 lumbor MSE	2				
9				FF0 S)				
10	Button8	Button7	Button6	Button5	Button4	Button3	Button2	Button1		
10	Dationo	Duttoin	Duttonio		Delta X	Duttorio	Duttoniz	Buttonn		
12					erved					
13					Delta Y					
14				Rese	erved					
15				Delta	Wheel					
				FF1 S	ection					
16			L	inear Accele	eration X LS	В				
17			L	inear Accele	eration X MS	В				
18			L	inear Accele	eration Y LS	В				
19		Linear Acceleration Y MSB								
20			L	inear Accele	eration Z LS	В				
21			L	inear Accele		В				
				FF2 S						
22				Acceleration						
23				Acceleration						
24		Linear Acceleration No Gravity Y LSB Linear Acceleration No Gravity Y MSB								
24 26					· · · ·					
20				Acceleration Acceleration						
21			Linear		ection	2 1000				
28				Angular Vel						
29				Angular Vel						
30	-			Angular Vel	-					
31				Angular Vel						
32				Angular Vel	ocity Z LSB					
33				Angular Vel	ocity Z MSB					
				FF4 S	ection					
34				Magnetom	eter X LSB					
35					eter X MSB					
36					eter Y LSB					
37					eter Y MSB					
38					eter Z LSB					
39		Magnetometer Z MSB								

	Bit								
Byte	7	6	5	4	3	2	1	0	
				FF5 S	ection				
40				Tempera	ture LSB				
41				Tempera	ture MSB				
				FF6 S	ection				
42				Angular Pos	sition A LSB				
43				Angular Pos	sition A MSB				
44				Angular Pos	sition B LSB				
45				Angular Pos	sition B MSB				
56				Angular Pos	sition C LSB				
47				Angular Pos	ition C MSB				
48		Angular Position D LSB							
49		Angular Position D MSB							
		FF7 Section							
50				Rese	erved				
51				Rese	erved				
52				Rese	erved				
53				Rese	erved				

Format Select	Indicates the format of the MotionEngine Output packet
Format Flags	Indicates which portions of the MotionEngine Output packet are present.
Sequence Number:	monotonically increasing integer
Button n:	0 – not pressed
	1 – pressed
Delta X:	Q0. Changes in pointer location along the x-axis in
	dimensionless units called mickeys. X positive moves the
	pointer right.
Delta Y:	Q0. Changes in pointer location along the y-axis in
	dimensionless units called mickeys. Y positive moves the
	pointer down.
Delta wheel:	scroll wheel motion in detents. Up is positive.
Linear Acceleration	Q10. Reported in meters / second ² . X positive is forward, Y
	positive is to the right, and Z positive is down with respect to
	the handheld device frame of reference.
Linear Acceleration	Q10. Reported meters / second ² . X positive is forward, Y
No Gravity	positive is to the right, and Z positive is down with respect to
	the handheld device frame of reference.
Angular Velocity	Q10. Reported in radians / second. X positive is tilt right (roll),
	Y positive is tilt up (pitch), and Z positive is turn right (yaw),
	with respect to the handheld device frame of reference.
Magnetometer	Q12. Reported in gauss. X positive is forward, Y positive is to
	the right and Z positive is down with respect to the handheld
	device frame of reference.
Temperature	Q7. Reported in degrees Celsius.

Angular Position:	Q14. Reported in dimensionless units. The axes are given in
	quaternion form where A, B, C, and D represent the real, i, j,
	and k coefficients
Reserved	Reserved.

The Format 1 packet is used to retrieve data in the format used by Windows 8. The Format 1 packet is shown below.

	Bit								
Byte	7 6 5 4 3 2 1 0								
0	Class = 0x26								
1	Length								
2	Destination								
3	Source								
4	Format Select = 1								
5	FF7 FF6 FF5 FF4 FF3 FF2 FF1 FF0								
6 7	Sequence Number LSB								
8	····								
9	Sequence Number MSB								
	FF0 Section								
10	Acceleration X LSB								
11	Acceleration X MSB								
12	Acceleration Y LSB								
13	Acceleration Y MSB								
14	Acceleration Z LSB								
15	Acceleration Z MSB								
	FF1 Section								
16	Linear Acceleration X LSB								
17 18	Linear Acceleration X MSB Linear Acceleration Y LSB								
18	Linear Acceleration Y LSB								
20	Linear Acceleration 7 LSB								
21	Linear Acceleration Z MSB								
	FF2 Section								
22	Angular Velocity X LSB								
23	Angular Velocity X MSB								
24	Angular Velocity Y LSB								
24	Angular Velocity Y MSB								
26	Angular Velocity Z LSB								
27	Angular Velocity Z MSB								
	FF3 Section Magnetometer X LSB								
28 29	Magnetometer X MSB								
30	Magnetometer Y LSB								
31	Magnetometer Y MSB								
32	Magnetometer Z LSB								
33	Magnetometer Z MSB								
	FF4 Section								
34	Inclination X LSB								
35	Inclination X MSB								
36	Inclination Y LSB								
37	Inclination Y MSB								
38	Inclination Z LSB								
39	Inclination Z MSB								

	Bit									
Byte	7	6	5	4	3	2	1	0		
				FF5 S	ection					
40				Compass H	eading LSB					
41				Compass H	eading MSB					
				FF6 S	ection					
42				Angular Pos	sition X LSB					
43				Angular Pos	ition X MSB					
44		Angular Position Y LSB								
45				Angular Pos	ition Y MSB					
46		Angular Position Z LSB								
47	Angular Position Z MSB									
48	Angular Position W LSB									
49	Angular Position W MSB									
	FF7 Section									
50				Activity Cla	assification					
51			F	Power Mana	gement Flag	S				

Figure 16: MotionEngine Output Packet, Format 1

Format Select	Indicates the format of the MotionEngine Output packet
Format Flags	Indicates which portions of the MotionEngine Output packet are present.
Sequence Number:	monotonically increasing integer generated by the HCOMM Hub.
Acceleration	The total acceleration of the device. Reported in units of 0.01g. X positive is to the right, Y positive is forward, and Z positive is up with respect to the handheld device frame of reference.
Linear Acceleration	The linear acceleration of the device minus gravity. Reported in units of 0.01g. X positive is to the right, Y positive is forward, and Z positive is up with respect to the handheld device frame of reference.
Angular Velocity	Reported in units of 0.1 degrees / second. X positive is tilt up (pitch), Y positive is tilt right (roll), and Z positive is turn left (yaw), with respect to the handheld device frame of reference.
Magnetometer	Reported in units of 0.001 gauss. X positive is forward, Y positive is to the right and Z positive is down with respect to the handheld device frame of reference.
Inclination	Reported in units of 0.1 degrees. X positive is tilt up (pitch), Y positive is tilt right (roll), and Z positive is turn left (yaw), with respect to the handheld device frame of reference.
Compass heading	Reported in units of 0.1 degrees. The compass output is in the range of $0-359.9^{\circ}$.
Angular Position:	Reported in dimensionless units of 0.0001. The axes are given in quaternion form where w, x, y, and z represent the real, i, j, and k coefficients

Activity Classification	 Activity classification is the state if the device based on its movement. Activity classification is updated only when MotionEngine is running. See section 6.2.4.2 for information about motion thresholds and power management configurations. 0 – unknown 1 – on table. The hub is at rest on a stable surface with very little vibration. 2 – stationary. The hub's motion is below the stable threshold but the stable duration requirement has not been met. 3 – stable. The hub's motion has met the stable threshold and duration requirements. 4 – motion. The hub is moving.
Power Management Flags	 Power management flags is a bit field that indicates occurrences of events that can be used to manage power. Flags may be set periodically during normal operation. Multiple flags may be set. See section 6.2.4.2 for information about motion thresholds and power management configurations. Bit 0 – on table. The hub is at rest on a stable surface with very little vibration. Bit 1 – is stable. The hub's motion has met the stable threshold and duration requirements. Bit 2 – motion detected by the accelerometer Bit 3 – motion detected by MotionEngine

The Format 2 packet is used to retrieve a stream of raw sensor data. The Format 2 packet is shown below.

	Bit								
Byte	7	6	5	4	3	2	1	0	
0	Class = 0x26								
1				Ler	igth				
2				Destir	nation				
3				Sou	irce				
4				Format S	elect = 2				
5	FF7	FF6	FF5	FF4	FF3	FF2	FF1	FF0	
6				Sequence N	lumber LSE	}			
7									
8				•					
9				Sequence N	lumber MSE	8			
	Data Section (maximum of 44 bytes)								
10-53				Char	nnels				
		Channel format for 3-axis sensor							
N		Channel ID (0-7)							
N + 1			C	hannel sequ		er			
N + 2		X-axis LSB							
N + 3		X-axis MSB							
N + 4		Y-axis LSB							
N + 5				Y-axis					
N + 6		Z-axis LSB							
N + 7	Z-axis MSB								
			Chanr	nel format fo		sensor			
N				Channel					
N + 1			C	hannel sequ		er			
N + 2				LS					
N + 3				M	SB				

Figure 17: MotionEngine Output Packet, Format 2

Format Select	Indicates the format of the MotionEngine Output packet
Format Flags	Indicates which streams of the MotionEngine Output packet are active. FF0 – accelerometer (3-axis) FF1 – gyroscope (3-axis) FF2 – magnetometer (3-axis) FF3 – ambient light sensor (1-axis)
	FF4 – pressure sensor (1-axis) FF5 – proximity sensor (1-axis) FF6 – temperature (1-axis) FF7 – fusion tick (1-axis)
Channels:	A channel consists of a channel ID and a channel sequence number followed by either 2 or 6 bytes of sensor data. The data section of a Format 2 packet contains as many channels as will

	fit. There is no fixed order to the channels. A Format 2 packet is constructed by populating it with sensor samples as sensors are sampled and at the rate sensors are sampled. Once the packet is filled, it is sent. For example, a Format 2 packet may contain an accelerometer channel (8 bytes), a gyroscope channel (8 bytes), a temperature channel (4 bytes), a magnetometer channel (8 bytes), a gyroscope channel (8 bytes), a temperature channel (4 bytes), a temperature channel (4 bytes) and an empty channel (4 bytes in this case). This set of channels fills the available 44 bytes.
Channel ID	Identifies which channel is being reported. The channel ID's 0- 7 correspond to FF0 – FF7. A channel ID of 255 indicates the empty channel. ID's outside of these values are reserved. The empty channel is defined to fill all remaining bytes in the packet. In other words, if the empty channel is encountered there is no more data in the packet.
Channel sequence number	A monotonically increment sequence number for the given channel. Each channel has its own independent sequence number.
X/Y/Z-axis LSB/MSB	The raw sample data for each axis of the sensor.

The Format 3 packet is used for systems with larger ranges for accelerometer and gyroscope output. The tradeoff in using this output is a loss of some resolution. Format 3 also uses μ T rather than gauss for the magnetic field. The Format 3 packet is shown below.

				В	it			
Byte	7	6	5	4	3	2	1	0
0				Class	= 0x26			
1				Ler	ngth			
2				Desti				
3					urce			
4		===		1	Select = 3			
5	FF7	FF6	FF5	FF4	FF3	FF2	FF1	FF0
6				Sequence N	lumber LSE	3		
7 8				•				
<u> </u>				Sequence N	 lumbor MSE	2		
9				FF0 S)		
10	Button8	Button7	Button6	Button5	Button4	Button3	Button2	Button1
10	Duttorio	Buttonn	Duttonio		Delta X	Duttorio	Duttoniz	Buttonn
12					erved			
13					Delta Y			
14				Rese	erved			
15				Delta	Wheel			
				FF1 S	ection			
16			L	inear Accele	eration X LS	В		
17		Linear Acceleration X MSB						
18	Linear Acceleration Y LSB							
19	Linear Acceleration Y MSB							
20	Linear Acceleration Z LSB							
21	Linear Acceleration Z MSB							
	FF2 Section							
22		Linear Acceleration No Gravity X LSB						
23		Linear Acceleration No Gravity X MSB						
24		Linear Acceleration No Gravity YLSB						
24 26		Linear Acceleration No Gravity Y MSB Linear Acceleration No Gravity Z LSB						
20				Acceleration				
21			Linear		ection	2 1000		
28				Angular Vel				
29				Angular Vel				
30	-			Angular Vel	-			
31				Angular Vel				
32				Angular Vel	ocity Z LSB			
33				Angular Vel	ocity Z MSB			
				FF4 S	ection			
34				Magnetom	eter X LSB			
35					eter X MSB			
36					eter Y LSB			
37					eter Y MSB			
38					eter Z LSB			
39				Magnetom	eter Z MSB			

	Bit							
Byte	7	6	5	4	3	2	1	0
		FF5 Section						
40				Tempera	ture LSB			
41				Tempera	ture MSB			
				FF6 S	ection			
42				Angular Pos	sition A LSB			
43				Angular Pos	sition A MSB			
44				Angular Pos	sition B LSB			
45		Angular Position B MSB						
56	Angular Position C LSB							
47	Angular Position C MSB							
48	Angular Position D LSB							
49	Angular Position D MSB							
	FF7 Section							
50				Rese	erved			
51				Rese	erved			
52	Reserved							
53	Reserved							

Figure 18: Mo	tionEngine Output	t Packet, Format 3
---------------	-------------------	--------------------

Format Select	Indicates the format of the MotionEngine Output packet
Format Flags	Indicates which portions of the MotionEngine Output packet are present.
Sequence Number:	monotonically increasing integer
Button n:	0 – not pressed
	1 – pressed
Delta X:	Q0. Changes in pointer location along the x-axis in
	dimensionless units called mickeys. X positive moves the
	pointer right.
Delta Y:	Q0. Changes in pointer location along the y-axis in
	dimensionless units called mickeys. Y positive moves the
	pointer down.
Delta wheel:	scroll wheel motion in detents. Up is positive.
Linear Acceleration	Q8. Reported in meters / second ² . X positive is forward, Y
	positive is to the right, and Z positive is down with respect to
	the handheld device frame of reference.
Linear Acceleration	Q8. Reported meters / second ² . X positive is forward, Y
No Gravity	positive is to the right, and Z positive is down with respect to
	the handheld device frame of reference.
Angular Velocity	Q9. Reported in radians / second. X positive is tilt right (roll),
	Y positive is tilt up (pitch), and Z positive is turn right (yaw),
	with respect to the handheld device frame of reference.
Magnetometer	Q5. Reported in microteslas. X positive is forward, Y positive is
	to the right and Z positive is down with respect to the handheld
	device frame of reference.
Temperature	Q7. Reported in degrees Celsius.

Angular Position:	Q14. Reported in dimensionless units. The axes are given in
	quaternion form where A, B, C, and D represent the real, i, j, and k coefficients
Reserved	Reserved.

The Format 4 packet is used to retrieve a stream of any and all data from the HCOMM Hub. The Format 4 packet is shown below. In addition to the 16-bit number format, the

format 4 packet uses a 32-bit, 2's complement, fixed-point format. This format is used for the 1-axis extended sensor. The Q point still indicates the number of fractional bits.

	Bit			
Byte	7 6 5 4 3 2 1 0			
0	Class = 0x26			
1	Length			
2	Destination			
3	Source			
4	Format Select = 4			
5	FF7 FF6 FF5 FF4 FF3 FF2 FF1 FF0			
6	Sequence Number LSB			
7				
8				
9	Sequence Number MSB			
	Data Section (maximum of 44 bytes)			
10-53	Channels			
	Channel format for 3-axis sensor			
N	Channel ID			
N + 1	Channel sequence number			
N + 2	X-axis LSB			
N + 3	X-axis MSB			
N + 4	Y-axis LSB			
N + 5	Y-axis MSB			
N + 6	Z-axis LSB			
N + 7	Z-axis MSB			
	If FF3 Is Enabled			
N + 8	Timestamp LSB			
N + 9				
N + 10				
N + 11	Timestamp MSB			
	Channel format for a 1-axis sensor			
N	Channel ID			
N + 1	Channel sequence number			
N + 2	LSB			
N + 3	MSB			
NL - 4	If FF3 Is Enabled			
N + 4	Timestamp LSB			
N + 5				
N + 6	Timestama MSP			
N + 7	Timestamp MSB Channel format for 4-axis sensor			
N	Channel ID Channel ID			
N + 1	Channel sequence number			
N + 1 N + 2	real coefficient LSB			
N + 2 N + 3	real coefficient MSB			
N + 3	i coefficient LSB			
N + 4	i coefficient MSB			
N + 5 N + 6	j coefficient LSB			
N + 0 N + 7	k coefficient MSB			
IN + /				

N + 8	k coefficient LSB
N + 9	k coefficient MSB
	If FF3 Is Enabled
N + 10	Timestamp LSB
N + 11	
N + 12	
N + 13	Timestamp MSB
	Channel format for 1-axis extended sensor
Ν	Channel ID
N + 1	Channel sequence number
N + 2	LSB
N + 3	
N + 4	
N + 5	MSB
	If FF3 Is Enabled
N + 6	Timestamp LSB
N + 7	
N + 8	
N + 9	Timestamp MSB
	Channel format for 3+3-axis sensor
Ν	Channel ID
N + 1	Channel sequence number
N + 2	X-axis LSB
N + 3	X-axis MSB
N + 4	Y-axis LSB
N + 5	Y-axis MSB
N + 6	Z-axis LSB
N + 7	Z-axis MSB
N + 8	X-axis meta data LSB
N + 9	X-axis meta data MSB
N + 10	Y-axis meta data LSB
N + 11	Y-axis meta data MSB
N + 12	Z-axis meta data LSB
N + 13	Z-axis meta data MSB
	If FF3 Is Enabled
N + 14	Timestamp LSB
N + 15	
N + 16	
N + 17	Timestamp MSB
	Channel format for 3+1-axis sensor
Ν	Channel ID
N + 1	Channel sequence number
N + 2	X-axis LSB
N + 3	X-axis MSB
N + 4	Y-axis LSB
N + 5	Y-axis MSB
N + 6	Z-axis LSB

N + 7	Z-axis MSB
N + 8	Sensor meta data LSB
N + 9	Sensor meta data MSB
	If FF3 Is Enabled
N + 10	Timestamp LSB
N + 11	
N + 12	
N + 13	Timestamp MSB
	Channel format for 4+1-axis sensor
N	Channel ID
N + 1	Channel sequence number
N + 2	real coefficient LSB
N + 3	real coefficient MSB
N + 4	i coefficient LSB
N + 5	i coefficient MSB
N + 6	j coefficient LSB
N + 7	j coefficient MSB
N + 8	k coefficient LSB
N + 9	k coefficient MSB
N +10	Sensor meta data LSB
N +11	Sensor meta data MSB
	If FF3 Is Enabled
N + 12	Timestamp LSB
N + 13	
N + 14	
N + 15	Timestamp MSB

Figure 19: MotionEngine Output Packet, Format 4

Format Select	Indicates the format of the MotionEngine Output packet
Format Flags	Indicates which types of outputs are placed in the stream. All outputs that are produced for a given type are included in the stream. To disable an output, turn it off using sensor period request messages.
	FF0 - raw data. Unprocessed data as it is received form the sensors. The units are ADC units.
	FF1 – continuous data. Data produced from sensors that operate continuously. Examples include accelerometer, angular velocity and angular position.
	FF2 – event data. Data produced from sensors that detect events. Examples include step detector and tap detector FF3 – timestamp data. The timestamp for each reported channel is appended as a 4-byte unsigned integer to the end of the
	channel.
	FF4 – reserved
	FF5 – reserved FF6 – reserved
	FF7 – reserved

Channels:	A channel consists of a channel ID and a channel sequence number followed by 2, 4, 6, 8 or 12 bytes of sensor data. The data section of a Format 4 packet contains as many channels as will fit. There is no fixed order to the channels. A Format 4 packet is constructed by populating it with sensor samples as sensors are sampled and at the rate sensors are sampled. Once the packet is filled or an event sensor event is added, it is sent. For example, a Format 4 packet may contain an accelerometer channel (8 bytes), a gyroscope channel (8 bytes), a temperature channel (4 bytes), a magnetometer channel (8 bytes), a gyroscope channel (8 bytes), a temperature channel (4 bytes) and an empty channel (4 bytes in this case). This set of channels fills the available 44 bytes. A channel becomes 4 bytes larger if the FF3 (timestamp) flag is set, to make room for the channel timestamp. The timestamp is appended to the end of the channel.
Channel ID	Identifies which channel is being reported. The empty channel is defined to fill all remaining bytes in the packet. In other words, if the empty channel is encountered there is no more data in the packet. The channel IDs are defined in Figure 20.
Channel sequence number	A monotonically increment sequence number for the given channel. Each channel has its own independent sequence number.
X/Y/Z-axis LSB/MSB	The raw sample data for each axis of the sensor.

ID	Туре	Axes	Units	Description
0	Reserved		Reserved	Reserved
1	Raw	3	ADC	Raw accelerometer
2	Raw	3+1	ADC	Raw gyroscope
			ADC	Raw gyroscope temperature
3	Raw	3	ADC	Raw magnetometer
4	Raw	1	ADC	Raw temperature
5	Raw	1E	ADC	Raw pressure
6	Raw	1E	ADC	Raw ambient light
7	Raw	1	ADC	Raw humidity
8	Raw	1	ADC	Raw proximity
9	Raw	1	none	Raw fusion tick
10	Continuous	3	m/s^2, Q8	Accelerometer
11	Continuous	3	rad/sec, Q9	Gyroscope
12	Continuous	3+3	rad/sec, Q9	Gyroscope uncalibrated
			rad/sec, Q9	Gyroscope drift estimate
13	Continuous	3	μ Tesla, Q5	Magnetometer
14	Continuous	3+3	μ Tesla, Q5	Magnetic field uncalibrated
			μ Tesla, Q5	Hard iron bias
15	Continuous	4+1	Unit quaternion, Q14	Rotation vector
			radians, Q12	Rotation vector accuracy
16	Continuous	4	Unit quaternion, Q14	Game rotation vector
17	Continuous	4+1	Unit quaternion, Q14	Geomagnetic rotation vector
			radians, Q12	Geomagnetic rotation vector accuracy
18	Continuous	3	m/s^2, Q8	Linear acceleration
19	Continuous	3	m/s^2, Q8	Gravity
20	Continuous	1E	hectoPascal, Q8	Pressure
21	Continuous	1E	lux, Q8	Ambient light
22	Continuous	1	percent, Q8	Relative humidity
23	Continuous	1	cm, Q4	Proximity
24	Continuous	1	°C, Q7	Temperature
25	Event	1	Tap events	Tap detector
26	Event	1	Step event	Step detector
27	Event	1	Enumeration	Activity classification
28	Event	1	Bit field	Power management
29	Event	1E	Step count	Step counter
30	Event	1	Sig. motion event	Significant motion detector
31	Event	1	Shake events	Shake detector
32	Event	1	Flip events	Flip detector
33	Event	1	Pickup events	Pickup detector
34	Continuous	3	m/s^2, Q8	Screen rotation accelerometer
35	Event	1	Stability classification	Stability classifier
36	Continuous	4+1	PAC confidences	Personal activity classifier
37	Event	1	Sleep stage	Sleep detector
38	Event	1	Tilt events	Tilt detector
39	Event	1	In Pocket	Pocket detector
40	Event	1	circle	Circle detector

41-254	Reserved		Reserved	Reserved
255	N/A	N/A	N/A	empty channel

Figure 20: Channel ID Definitions for Format 4

5.1.6 DCE Out V2 (Class 0x27)

This packet conveys 9-axis raw motion sensor data.

		Bit									
Byte	7	6	5	4	3	2	1	0			
0				Class :	= 0x27						
1				Len	gth						
2		Destination									
3	Source										
4				Sequence N	lumber LSB						
5											
6											
7				Sequence N	umber MSB						
8				Accelerom	eter X LSB						
9				Accelerome	eter X MSB						
10				Accelerom	eter Y LSB						
11				Accelerome	eter Y MSB						
12				Accelerom	eter Z LSB						
13				Accelerome	eter Z MSB						
14				Rotational Se	ensor X LSB	}					
15			F	Rotational Se	ensor X MSE	3					
16				Rotational Se							
17				Rotational Se							
18				Rotational S							
19			F	Rotational Se	ensor Z MSE	3					
20				Magnetom							
21				Magnetome	eter X MSB						
22				Magnetom	eter Y LSB						
23				Magnetome	eter Y MSB						
24				Magnetom							
25				Magnetome	eter Z MSB						
26				Tempera							
27				Temperat							
28	Reserved	Reserved	Reserved	Reserved	Flag4	Flag3	Flag2	Flag1			
29	Button8	Button7	Button6	Button5	Button4	Button3	Button2	Button1			
30				Delta	Wheel						

Figure 21: DCE Out V2 Packet

Sequence number 32-bit unsigned monotonically increasing number

Suppression Flags	Suppression flags indicate that a user interface event occurred
	that may cause unintended motion by the user. Motion would
	be suppressed for a predefined duration according to the flag
	selected.
	Flag1 – Set to indicate button press event occurs
	Flag2 – Set to indicate button release
	Flag3 – Set to indicate encoder up motion is detected
	Flag4 – Set to indicate encoder down motion is detected
Button n	Bit mapped field for state information for up to 8 buttons.
	0 - not pressed. 1 - pressed.
Other fields	Self-explanatory

5.1.7 DCE Out V3 (Class 0x28)

This packet conveys the 6-axis raw motion sensor data in a smaller packet size of 20 bytes. It is generated at the sampling rate.

		Bit									
Byte	7	6	5	4	3	2	1	0			
0		Class = 0x28									
1				Lei	ngth						
2				Desti	nation						
3				So	urce						
4				Sequenc	e Number						
5	Flag4	Flag3	Flag2	Flag1	Button4	Button3	Button2	Button1			
6				Accelerom	eter X LSB						
7				Accelerom	eter X MSB						
8				Acceleron	eter Y LSB						
9				Accelerom	eter Y MSB						
10				Acceleron	neter Z LSB						
11				Accelerom	eter Z MSB						
12				Rotational S	ensor X LSE	3					
13				Rotational S	ensor X MSI	3					
14				Rotational S	ensor Y LSE	3					
15				Rotational S	ensor Y MSI	3					
16				Rotational S	Sensor Z LSE	3					
17				Rotational S	ensor Z MSI	3					
18				Tempera	ature LSB						
19				Tempera	ture MSB						

Figure 22: DCE Out V3 Packet

Sequence number Suppression Flags 8-bit unsigned monotonically increasing number Suppression flags indicate that a user interface event occurred that may cause unintended motion by the user. Motion would be suppressed for a predefined duration according to the flag selected.

	Flag1 – Set to indicate button press event occurs
	Flag2 – Set to indicate button release
	Flag3 – Set to indicate encoder up motion is detected
	Flag4 – Set to indicate encoder down motion is detected
Button n	Bit mapped field for state information for up to 4 buttons.
	0 - not pressed. 1 - pressed.
Other fields	Self-explanatory

5.1.8 DCE Out V4 (Class 0x29)

The DCE Out V4 packet is a flexible packet that can carry many different payloads. It uses a subclass filed similar to the way the generic in and out messages use a subclass field. The format for a general DCE Out V4 packet is shown in Figure 23.

	Bit										
Byte	7 6 5 4 3 2 1 0										
0		Class = 0x29									
1				Ler	igth						
2	Destination										
3				Soι	irce						
4		Subclass									
5		Sequence Number									
6-19				Pay	load						

Figure 23 - DCE Out V4 Packet

5.1.8.1 DCE Out V4 - AG (Subclass 0x00)

This packet carries raw accelerometer, gyroscope and temperature sensor sample data.

	Bit											
Byte	7	6	5	4	3	2	1	0				
0		Class = 0x29										
1		Length										
2		Destination										
3				Sou	irce							
4				Subclas	s = 0x00							
5				Sequence	e Number							
6				Accelerom	eter X LSB							
7				Accelerom	eter X MSB							
8				Accelerom	eter Y LSB							
9				Accelerom	eter Y MSB							
10				Accelerom	eter Z LSB							
11				Accelerom	eter Z MSB							
12				Rotational S	ensor X LSE	3						
13			F	Rotational Se	ensor X MSE	3						
14				Rotational S	ensor Y LSE	3						
15			F	Rotational Se	ensor Y MSE	3						
16				Rotational S	ensor Z LSE	}						
17			F	Rotational Se	ensor Z MSE	3						
18				Tempera	ture LSB							
19				Tempera	ture MSB							

Figure 24 - DCE Out v4 Class

8-bit unsigned monotonically increasing number

Sequence number: Other fields:

Self-explanatory

5.1.8.2 DCE Out V4 – M (Subclass 0x01)

This packet carries raw magnetometer sensor sample data, button states and control flags.

				Bi	it					
Byte	7	6	5	4	3	2	1	0		
0		Class = 0x29								
1				Len	gth					
2		Destination								
3				Sou	rce					
4				Subclass	s = 0x01					
5				Sequence	Number					
6				Magnetome	eter X LSB					
7				Magnetome	eter X MSB					
8				Magnetome	eter Y LSB					
9				Magnetome	eter Y MSB					
10				Magnetome	eter Z LSB					
11				Magnetome	eter Z MSB					
12	Reserved	Reserved	Reserved	Reserved	Flag4	Flag3	Flag2	Flag1		
13	Button8	Button7	Button6	Button5	Button4	Button3	Button2	Button1		
14				Delta V	Vheel					
15				Rese	rved					
16				Rese	rved					
17				Rese	rved					
18				Rese	rved					
19				Rese	rved					

Figure 25: DCE Out V4 Packet

Sequence number Suppression Flags	8-bit unsigned monotonically increasing number Suppression flags indicate that a user interface event occurred that may cause unintended motion by the user. Motion would be suppressed for a predefined duration according to the flag selected.
	Flag1 – Set to indicate button press event occurs
	Flag2 – Set to indicate button release
	Flag3 – Set to indicate encoder up motion is detected
	Flag4 – Set to indicate encoder down motion is detected
Button n	Bit mapped field for state information for up to 8 buttons.
	0 - not pressed. 1 - pressed.
Other fields	Self-explanatory

5.2 Outbound Packets

This section covers packets that are sent to a hub from a host.

5.2.1 DataOut Packet (Class 0x07)

This packet is used as a container for command, control, status, testing, and debugging information. Each packet contains a subclass. The subclass determines the type of information carried with the DataOut packet. All subclass values are reserved with the exception of those described in this section

	Bit											
Byte	7	7 6 5 4 3 2 1 0										
0		Class = 0x07										
1	Length											
2	Destination											
3				So	urce							
4		Subclass										
5-11				Pay	/load							

Figure 26: DataOut Packet

Subclass: identifies the specific type of information being carried within the DataOut packet

Payload: the remaining report payload, up to 7 bytes

5.2.1.1 FRS Write Request (Subclass 0x06)

This request is sent to the device to initiate a flash record write. A length of 0 will cause the record to be cleared.

		Bit										
Byte	7	6	5	4	3	2	1	0				
0				Class	= 0x07							
1				Ler	igth							
2		Destination										
3	Source											
4				Subclas	s = 0x06							
5				Rese	erved							
6				Lengt	h LSB							
7				Lengt	n MSB							
8		FRS Type LSB										
9				FRS Ty	pe MSB							

Figure 27: FRS Write Request Packet

Length:length in 32-bit words of record to be writtenFRS Type:FRS record type (see Section 6.1)

5.2.1.2 FRS Write Data (Subclass 0x07)

This packet is sent to the device to write data to the record indicated by a previous write request. Only one FRS operation may be in progress at any one time.

				В	it					
Byte	7	7 6 5 4 3 2 1 0								
0				Class	= 0x07					
1				Ler	ngth					
2				Desti	nation					
3				Soι	urce					
4		Subclass = 0x07								
5		Reserved								
6				Offse	t LSB					
7				Offse	t MSB					
8				Data	LSB					
9				Dat	a					
10				Dat	a					
11				Data	MSB					

Figure 28: FRS Write Data Packet

Offset:	offset, in 32-bit words, from the beginning of the record indicating
	where in the record the data is to be written
Data:	32-bit word of data to be written to the FRS record

5.2.1.3 FRS Read Request (Subclass 0x08)

This packet is sent to the device to request a flash record to be sent. The data sent starts from the word offset and continues through to the end of the record or up to the block size requested. The entire record is sent if the requested block size is 0.

		Bit								
Byte	7	7 6 5 4 3 2 1 0								
0				Class	= 0x07					
1				Ler	igth					
2				Desti	nation					
3				Soι	irce					
4		Subclass = 0x08								
5				Rese	erved					
6		Read Offset LSB								
7		Read Offset MSB								
8		FRS Type LSB								
9		FRS Type MSB								
10		Block Size LSB								
11				Block Si	ze MSB					

Figure 29: FRS Read Request Packet

Read Offset:	offset, in 32-bit words, from the beginning of the FRS records at
	which to begin the read operation. The first word in an FRS record is
	word 0.
FRS Type:	FRS record type to read (see Section 6.1)
Block Size:	number of 32-bit words to read

5.2.1.4 **Product ID Request (Subclass 0x09)**

This request is sent from the host to a device to request the product ID information.

		Bit								
Byte	7	7 6 5 4 3 2 1 0								
0		Class = 0x07								
1		Length								
2		Destination								
3		Source								
4		Subclass = 0x09								
5				Rese	erved					

Figure 30: Product ID Request Packet

5.2.1.5 Activity Classification Notification (Subclass 0x12)

The activity classification notification is used by systems that perform algorithm processing on the host. This notification is used to communicate motion activity classification information back to the FSP for power management purposes.

		Bit								
Byte	7	7 6 5 4 3 2 1 0								
0		Class = 0x07								
1		Length								
2		Destination								
3		Source								
4		Subclass = 0x12								
5		Classification								

Figure 31: Activity Classification Notification

Classification: 0 - stable

- 1 on table
- 2 active
- 3 watchdog pet. Used by host systems to notify sensor only systems that MotionEngine is still running

5.2.1.6 Freespace Data Mode Control V2 Request (Subclass 0x14)

This packet controls generation of Freespace motion packets.

		Bit							
Byte	7	7 6 5 4 3 2 1 0							
0				Class	s = 0x07				
1				Le	ength				
2				Des	tination				
3		Source							
4		Subclass = 0x14							
5	Reserved			Output	Operat	Operating Mode Requested Operating			
		Status Status							
6		Packet Select							
7		Format Select							
8	FF7	FF6	FF5	FF4	FF3	FF2	FF1	FF0	
9-11		Reserved							

Figure 32: Freespace Data Mode Control V2 Request Packet

Operating Status:	0 - update the current operating mode as indicated
	1 – report the current operating mode without changing it
Operating Mode Requested	Requests a change to the specified operating mode. The hub
	will enter the requested mode if allowed.
	0 – Full Motion
	1 – Sleep
	2 – Reserved
	3 – Deprecated
	4 – Full Motion On
	5 – Notify-on-Motion
Output Status	0 – update the current packet and format selections as
-	indicated
	1 – report the current packet and format selections without
	changing them
Packet select	Select the output packet sent by the FSP to report motion data.
	0-none.
	1 – Mouse
	2 – Reserved
	3 – Reserved
	4 – Reserved
	5 – Reserved
	6 – Reserved
	7 – SuperSDA (reserved)
	8 – MotionEngine Output
	9 – Mouse and MotionEngine Output. Both mouse and
	MotionEngine output packets are sent
	10-255 – reserved
Format Select	Select the format of the MotionEngine Output packet. See
	5.1.5 for details.
FF7 - FF0	Format Flags – used to enable various portions of a
	MotionEngine Output packet. See 5.1.5 for details.

5.2.1.7 Sensor Period Request (Subclass 0x16)

This packet is used to set or get the sampling period for each sensor or the fusion rate for sensor fusion processing. The period for each sensor must first be set. Once the periods have been set they must be committed. The last packet sent may both set and commit the periods. The sensor periods from previous set operations are retained until the hub is next reset. Therefore, once the periods have all been set, only the ones that need changing need to be set again. In order for a change to take effect it must be committed. Only the sensors that the user wants to operate should have their periods set to a non-zero value. The other periods should be set to 0. For sensor fusion only the fusion period needs to be non-zero. The hub will determine which sensors to operate and at what periods in order to satisfy the superset of requirements imposed by the periods requested for all the sensors.

		Bit							
Byte	7	6 5 4 3 2 1 0							
0				Class	s = 0x07				
1				Le	ength				
2				Des	tination				
3		Source							
4		Subclass = 0x16							
5		Reserved Set Commit							
6		Sensor							
7		Reserved							
8		Period LSB							
9									
10									
11				Perio	od MSB				

	Figure 33: Sensor Period Request
Commit	Commit Period change
	0 – Don't commit
	1 – Commit change to system
Set	Set/get the sample period.
	0 - set the sample period
	1 - get the sample period
Sensor	Select which sensor period to set or get.
	0 - accelerometer
	1 – gyroscope
	2 - magnetometer
	3 – ambient light sensor
	4 – pressure sensor
	5 – proximity sensor
	6 – sensor fusion
	7 – step detector
	8 – tap detector
	9 – humidity sensor
	10 – ambient temperature sensor
	11 – significant motion detector

- 12 shake detector
- 13 screen rotation accelerometer
- 14 flip detector
- 15 pickup detector
- 16 stability detector
- 17 personal activity classifier
- 18 sleep detector
- 19 gravity
- 20 linear acceleration
- 21 rotation vector
- 22 game rotation vector
- 23 geo magnetic rotation vector
- 24 step counter
- 25 gyroscope uncalibrated
- 26 magnetometer uncalibrated
- 27 tilt detector
- 28 pocket detector
- 29 circle detector
- 30-255 reserved

Period Sensor period in microseconds. The actual sample period resolution supported varies from sensor to sensor. A sensor will never be operated at a period it does not support. The sample period returned from a get operation will be the actual sample rate used, regardless of the rate requested.

5.2.1.8 Button Motion Suppression Request (Subclass 0x17)

Button motion suppression (BMS) requests inform the hub that it needs to suppress unintended cursor motion due to a button or scroll wheel user input action. The BMS request byte specifies the type of action to suppress.

The closer in time to the action the packet is received by the hub, the more effectively the hub can suppress motion due to the action. Response times under 8ms are optimal. Response times over 50ms may affect motion not correlated to the user action. This request is also used to enable /disable park. Park is a cursor output suppression mechanism. When park is enabled cursor output is set to 0. Cursor output remains at 0 until park is disabled.

		Bit								
Byte	7	7 6 5 4 3 2 1 0								
0		Class = 0x07								
1		Length								
2		Destination								
3		Source								
4		Subclass = 0x17								
5		BMS Request								
6-11				Rese	erved					

Figure 34: Button Motion Suppression Request

BMS Request

- 0 button press
- 1 button release
- $2-s croll \ up$
- 3 scroll down
- 4 park enable
- 5 park disable
- 6-255 reserved

6 FSP Flash Record System

The FSP flash record system maintains a variety of records in flash memory. These records are used to store fixed system configuration, factory production configuration, customer product-specific configuration and dynamic information.

Each record may vary in length. The length of each record is a multiple of four bytes. There is at most one valid record of each type stored in flash.

Reserved bits must be set to 0. Undefined or inconsistent configurations result in unexpected behavior.

6.1 Record Types

The defined record types are listed in Figure 35.

Description	FRS Record Type	Scope	Producer
Tracking number record	0x4B4B	Device	Factory
Static calibration data record	0x7979	Device	Factory/Developer
Enable record	0x5627	Device	Factory
MotionEngine orientation record	0x2D3E	Product	Developer
MotionEngine power management record	0xD3E2	Product	Developer
Motion Engine angular position smoothing record	0x3E2D	Product	Developer

Figure 35: FSP Record Types

Each record can be described in terms of its scope and its producer. The scope indicates whether the record contains information that is specific to a device, hardware or product. Device scope is information that varies per individual device. Hardware scope is information that varies with each hardware implementation of a product. Product scope is information that varies with each overall implementation of a product. A given hardware implementation can support multiple overall implementations.

The producer indicates who produces the information to populate a record. "System" indicates that the firmware itself produces the data. "Factory" indicates that the factory production process produces the data. "Developer" indicates that an engineering product developer produces the data. Even though a developer produces the data, the record may be programmed onto a device during the factory production process.

6.2 Device Records

The tracking number and network ID records vary for each device.

6.2.1 Tracking Number

The tracking number record stores a 32-bit number used to identify an individual device. The format of a tracking number record is shown in Figure 36.

Word	Description
0	32-bit tracking number

Figure 36: Tracking Number Record

6.2.2 Static Calibration Data

Static calibration data is produced by the manufacturing process for per device calibration or by the design process for nominal calibration. The data format is proprietary to Hillcrest Labs.

6.2.3 Enable

The enable record stores product enable information. The data format is proprietary to Hillcrest Labs.

6.2.4 Product Records

6.2.4.1 MotionEngine Orientation

The MotionEngine Orientation record controls the rotation of MotionEngine output coordinate system relative to the sensor set's coordinate system. The rotation vector is a signed, 2's-complement fixed point number with a Q point of 30. The format of a MotionEngine Orientation record is shown in Figure 37 If the rotation vector is set to all 0's then no rotation will be applied. The default values are 0 for all for values.

Word	Description
0	Rotation quaternion X
1	Rotation quaternion Y
2	Rotation quaternion Z
3	Rotation quaternion W

Figure 37: MotionEngine Orientation Record

6.2.4.2 MotionEngine Power Management

The power management record controls the thresholds MotionEngine uses to determine when the device is at rest and when it is in motion. The format of a MotionEngine Power Management record is shown in Figure 38.

	Description			
Word	Byte 3	Byte 2	Byte 1	Byte 0
0	Delta orientation			
1	Stable threshold			
2	Gyro power save	Delta acceleration	Stable of	duration

Figure 38: MotionEngine Power Management Record

Delta orientation	Once a device has been determined to be not moving based on the generation of ON_TABLE or IS_STABLE, delta orientation is the amount of change in device orientation required to recognize that the device is in motion. The units are radians. The delta orientation value is a signed, 2's- complement fixed point number with a Q point of 29. The default value is 0.09.
Stable threshold	The gyro output must be below this limit for the stable duration in order for an IS_STABLE notification to be

	generated. The units are radians per second. The stable threshold value is a signed, 2's-complement fixed point number with a Q point of 25. The default value is 0.1.
Stable duration	The amount of time in seconds that motion must be below the stable threshold before an IS_STABLE notification is generated. The default value is 10.
Delta acceleration	When using wake-on-motion, this is the amount of acceleration required for the accelerometer to determine that motion has occurred. The units are mg. The delta acceleration value is unsigned. The default value is 2.
Gyro power save	Determines the gyroscope power management scheme used by MotionEngine. Gyroscope power usage can be reduced by turning the gryoscope off when the hub is not moving and thus the gyroscope is not needed. Allowing the gyroscope to be turned off to save power results in a delay of several tens of milliseconds after motion starts until updated gyroscope outputs are available. The actual delay depends on the startup time of the particular gyroscope being used. The default setting is none. 0 – none 1 – when on table 2 – when stable 3 – when on table or stable 4 – when on table and stable 5-255 – reserved

6.2.4.3 MotionEngine Angular Position Smoothing

During large, fast motions the angular position output may sometimes become misaligned with the actual angular position. When the device slows or stops, angular position can be determined accurately and the angular position output updated accordingly. However, step updates to the output are undesirable in some applications. Angular position smoothing addresses this issue by correcting angular position errors only when the device is moving.

The angular position smoothing record controls the thresholds MotionEngine uses to angular position smoothing. The format of an Angular Position Smoothing record is shown in Figure 39. The angular position smoothing parameters are all unsigned, fixed point numbers. If this record is not configured, the hub uses the default values listed below.

Word	Description
0	Scaling
1	Max rotation
2	Max error
3	Stability magnitude

rigure 33. Angular Position Shoothing Record		
Scaling	Scaling controls what fraction of the angular velocity can be used to correct angular position errors. The range for this parameter is 0 to 1.0. This parameter is dimensionless. The Q point is 30. The default scale is 0.2.	
Max rotation	Max rotation is the maximum amount of angular correction that can be used to correct angular position errors. The settings for scaling and max rotation determine how aggressively angular errors are corrected. The range is 0 to 2*PI. The units are radians. The Q point is 29. The default value is 7.5 degrees or 0.131 radians.	
Max error	Max error is the maximum angular error allowed to accumulate before the angular position output is updated in a single step. The units are radians. The range is 0 to 2*PI. The Q point is 29. The default value is 15 degrees or 0.262 radians.	
Stability magnitude	Stability magnitude controls the amount of change in angular position that must occur before the angular position output is updated with a new value. The units are radians. The Q point is 29. The default value is 0.1 degrees or 0.00175 radians.	

Figure 39: Angular Position Smoothing Record

7 References

- 1. USB Device Class Definition for Human Interface Devices (HID) Version 1.11: http://www.usb.org/developers/devclass_docs/HID1_11.pdf.
- 2. USB HID Usage Tables Version 1.12: http://www.usb.org/developers/devclass_docs/Hut1_12.pdf.
- 3. 1000-1024 Calibration Test Station Manual, Hillcrest Labs. (under NDA only)
- 4. http://libfreespace.hillcrestlabs.com.
- 5. 1000-3041 Developing a Freespace Remote Control, Hillcrest Labs.

8 Legal Statements

© Copyright 09/2019 CEVA, Inc. and/or its subsidiaries ("CEVA") All rights reserved. All specifications are subject to change without notice.

Freespace is a registered trademark of CEVA. Other company and product names mentioned in this document may be the trademark or registered trademark of their respective owners.

Disclaimer: The information furnished herein is believed to be accurate and reliable. However, the information is provided "AS IS", without any express or implied warranty of any kind including warranties of merchantability, non-infringement of intellectual property, or fitness for any particular purpose.

In no event shall CEVA or its suppliers be liable for any claims and/or damages whatsoever arising out of the use of or inability to use the materials. CEVA and its suppliers further do not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. CEVA may make changes to these materials, or to the products described within.

www.ceva-dsp.com

FOR MORE INFORMATION:

