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Disclaimer and Proprietary Information Notice 
The information contained in this document does not represent a commitment 
on any part by CEVA®, Inc., or its subsidiaries (collectively, "CEVA"). 
CEVA makes no warranty of any kind with regard to this material, including, 
but not limited to implied warranties of merchantability and fitness for a 
particular purpose whether arising out of law, custom, conduct or otherwise. 
Additionally, CEVA assumes no responsibility for any errors or omissions 
contained herein, and assumes no liability for special, direct, indirect or 
consequential damage, losses, costs, charges, claims, demands, fees or 
expenses, of any nature or kind, which are incurred in connection with the 
furnishing, performance, or use of this material. 
This document contains proprietary information, which is protected by U.S. 
and international copyright laws. All rights reserved. No part of this 
document may be reproduced, photocopied, or translated into another 
language without the prior written consent of CEVA. All product names are 
registered trademarks of CEVA®, Inc. and/or its subsidiaries, or, of its 
applicable suppliers if so stated. 
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Support 
CEVA® makes great efforts to provide a user-friendly software and 
hardware development environment. Along with this, CEVA provides 
comprehensive documentation, enabling users to learn and develop 
applications on their own. Due to the complexities involved in the 
development of DSP applications that might be beyond the scope of the 
documentation, an online Technical Support Service has been established. 
This service includes useful tips and provides fast and efficient help, assisting 
users to quickly resolve development problems. 
How to Get Technical Support: 

● FAQs: Visit our website http://www.ceva-dsp.com or your company’s 
protected page on the CEVA website for the latest answers to 
frequently asked questions. 

● Application Notes: Visit our website http://www.ceva-dsp.com or your 
company’s protected page on the CEVA website for the latest 
application notes. 

● Email: Use the CEVA central support email address ceva-
support@ceva-dsp.com. Your email will be forwarded automatically to 
the relevant support engineers and tools developers who will provide 
you with the most professional support to help you resolve any 
problem.  

● License Keys: Refer any license key requests or problems to 
sdtkeys@ceva-dsp.com. For SDT license keys installation information, 
see the SDT Installation and Licensing Scheme Guide. 

 
 

Email: ceva-support@ceva-dsp.com 
Visit us at: www.ceva-dsp.com 

http://www.ceva-dsp.com/
http://www.ceva-dsp.com/
mailto:ceva-support@ceva-dsp.com
mailto:ceva-support@ceva-dsp.com
mailto:sdtkeys@ceva-dsp.com
mailto:ceva-support@ceva-dsp.com
http://www.ceva-dsp.com/
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1. Introduction 
Robotic systems are a complex beast, requiring the combination of carefully 
picked mechanical, electrical, and programmed parts. 
Before a line of code is written, you have to pore over spec sheets to 
determine which mechanical components stand a chance of achieving your 
end goal. Every robot also requires sensors to understand the world around 
them, then rely on mapping algorithms to move where we want them to, not 
just where the code tells them (old programming joke).  
After you have something that proves your concept, you need to test more to 
fine tune the idea over time. Testing is another sophisticated and arduous 
process, to measure and analyze what the robot is seeing relative to what you 
see and want. 
If you're tired of reading this already, that's understandable. Even with this 
high-level summary of the process, there are still so many combinations of 
places where choices need to be made and things can go wrong. 
 

1.1 Scope 
This paper aims to highlight issues you should think about when designing a 
sensor system for your robot and discuss how you can gain confidence in the 
process. Specifically, it will include sensor qualification and sensor choice, 
key performance metrics, creating a test plan, setting up a testing 
environment, and an example analysis of the data. While we will explain the 
process in the context of our work with robot vacuums, the principles apply 
to any ground-roving robots. 

1.2 Audience 
If you are jumping into wheeled robot design, but aren’t sure where to start, 
this document can help!  If you have some experience already and just want 
to check if you’re missing anything, this document can help you too. 
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2. Sourcing the Right Sensors 
When selecting the right parts for your robot, choosing sensors is a pivotal 
step. The data that goes into the robot’s decision-making determines what it 
sees. If that data misrepresents the real world, the robot is destined to behave 
undesirably. Garbage in, garbage out. 
Let’s consider the sensing needs of a wheeled robot vacuum. The first thing 
to know is that there are three broad classes of navigation systems: 

1. Random Walk – these robots are going to use proximity sensors and 
wall bumper sensors to bounce around their environment in a mostly 
random fashion. They will cover a given area eventually, but must 
stop cleaning with enough energy left to find their way back to the 
charger or risk getting stranded with a dead battery. How do we get 
back to that charging station again? Inexpensive but inefficient. 

2. Intelligent Walk – these robots aim to improve the user experience 
and improve battery life, by making smart use of some combination 
of wheel encoders, Inertial Measurement Units (IMUs), and optical 
flow sensors. Robots that can clean in a smarter pattern and find their 
way back to that charger in the other room will do a better job and 
keep their users happier. 

3. Full Mapping (SLAM) – SLAM robots add a LIDAR sensor or 
wide-angle camera to map their environment and navigate in very 
complex areas. These sensor components add to the hardware cost 
while also requiring a more powerful processor to handle the data.  
These robots may still fall back on intelligent-walk strategies to 
handle dark or featureless areas. 

Clearly the IMU, wheel encoder, and optical flow sensors can be useful in 
both Intelligent Walk and SLAM systems. Let’s take a closer look at what 
these can do and how you can optimize them. 

2.1 Dead Reckoning 
The key to all Intelligent Walk navigation techniques is Dead Reckoning. 
Sounds scary, but it’s really just the process of estimating the robot’s location 
relative to a starting position using measurements of speed and direction over 
time. The fundamental problem here is that the estimated position will 
inevitably diverge from the true position due to small measurement and 
estimation errors that add up over time. Because dead reckoning doesn’t use 
any absolute reference points, minimizing the rate of this position error 
growth is very important. Let’s review the sensors involved and find out 
where these errors come from. 
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Figure 2-1 Dead Reckoning Error 

2.2 Wheel Encoder Characteristics 
Wheel encoders use optical or magnetic mechanisms to measure the rotation 
of your robot’s wheels (forward and reverse). These sensors register a “tick” 
for each fraction of the wheel rotation, and the ticks calibrate to a known 
distance around the circumference of the wheel, corresponding to a distance 
traveled along the floor. The finer your tick resolution, the more precisely 
you can measure the wheel distance. 

 
Figure 2-2 Wheel encoder components 

This sounds great, but there’s a catch. Robot wheels slip and skid, sometimes 
in obvious ways like if the robot gets stuck on an obstacle, and sometimes 
even when you don’t notice it. On some surfaces like dirty floors or thicker 
carpet, the wheels are continuously slipping a little with every bit of rotation. 
Imagine walking up a sand dune! 
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Figure 2-3 Different surfaces can change the effective wheel 

circumference 

Robots may cross a variety of surfaces while doing their job, so being able to 
adapt to the conditions will help to improve overall accuracy. 

2.3 IMU Sensor Characteristics 
Maintaining accurate heading is the key component to following a desired 
path. You can calculate heading from the wheel encoders, but due to the slips 
we already mentioned, this is not always the most accurate. A better source is 
the Inertial Measurement Unit (IMU). 
The IMU itself comprises an accelerometer and gyroscope, and sometimes an 
additional magnetometer. They have the key components to provide a digital 
sense of inertial motion and heading. Accelerometers track the force of linear 
acceleration, and when there is no movement, the direction of gravity. This 
helps provide a long-term measure of orientation. Gyroscopes track angular 
velocity and produce short-term orientation measurements. Magnetometers 
measure the magnetic field around them and provide long-term orientation 
based on this field.  
Let’s take a look at some characteristics to consider when comparing inertial 
sensors. 

• Gyroscope Bias/Zero Rate Offset (ZRO) 

• Accelerometer Bias/Zero Gravity Offset (ZGO) 

• Gyroscope scale 

• Vibration effects 

• Sensor noise 

• Sensor rate and quantization 

• Temperature hysteresis 

• Axis performance differences 
Of these, the most influential on sensor accuracy are the gyroscope scale, 
gyroscope bias, and accelerometer bias. 
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Gyroscope scale is a multiplicative error in the gyroscope output relative to 
its motion. For instance, if there was a scale error of 1%, then the gyroscope 
will be a degree off for every 100 degrees traveled (101° or 99°). This 
impacts any ground-roving robot by influencing the heading that it believes 
it’s traveling by that same amount. Cancelling rotations helps minimize error. 
A cancelling rotation is simply rotating the opposite of what you did before 
(e.g. turning clockwise a perceived +180 degrees and turning back a 
perceived -180 degrees). The more uncancelled rotations a robot makes, the 
more the scale error is multiplied. 
Gyroscope bias, or Zero Rate Offset, is the angular rate seen while the sensor 
is at rest (ideally 0). But since angular position is determined as the integral 
of angular rate, any offset error leads to an ever-growing heading error. Any 
angular error is extended along the robot’s path, creating a scaling positional 
error. As seen in Figure 2-4, the robot’s angular error (θ) contributes to its 
growing positional error (δ). 

 
Figure 2-4 Angular error (θ) and corresponding positional error (δ) 

Accelerometer bias, or Zero Gravity Offset, is a similar principle to ZRO. It 
is the latent acceleration reading while the device is still (ideally equal to 
gravity). Accelerometer output offsets result in pitch and roll errors. These 
offsets can affect overall orientation calculations and, in the case of a 
magnetometer, tilt compensation. 
In theory linear acceleration can be used to calculate velocity (integration) 
and position (double-integral), but even small inaccuracies from bias and 
noise can cause the error in integrated velocity and position values to grow 
exponentially over only a short time period. 

2.4 Optical Flow Sensor Characteristics 
An optical flow sensor tracks the movement of the floor below the robot to 
provide a 2D estimate of velocity.  This is the same technology in a computer 
mouse, but on a larger scale: it illuminates the floor, detects tiny features on 
the surface, and measures their movement between frames.  
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Figure 2-5 Optical flow tracking 

The advantage of looking at the floor is that the sensor can track robot 
movement independent of any wheel slippage. On the other hand, the 
perceived motion of a feature is a function of both velocity and distance 
between floor and sensor (consider how slowly a telephone pole on the 
horizon moves when compared to a telephone pole along the side of the 
road). If this distance is not precisely calibrated, or varies during use, 
measurement accuracy will suffer. For example, if the surface is closer to the 
sensor than expected (e.g. moving from tile to carpet), the measured velocity 
may be higher than the true velocity. 
Optical flow measurements can also be affected by the floor surface type. 
Some very smooth or dark floors may not have enough features for tracking, 
and then the measurements can be completely wrong. Some optical flow 
sensors have multiple illumination modes, e.g. LED or laser, with each mode 
having its own strengths and weaknesses. It makes sense to use the type that 
performs best for the surface you’re on, but you have to know when to 
switch. 

2.5 Dead Reckoning Sensor Fusion 
Clearly there are situations where each of these sensors works well, and when 
performance of one or more might break down. Sensor fusion is the process 
of choosing which sensors’ data to rely on at each moment, and how to 
combine their information for a more accurate overall state estimate.  
For example, we can compare the velocity estimates derived from each 
sensor in order to self-calibrate the scale of optical flow measurements while 
in operation. This eliminates the need for factory calibration and allows the 
system to adapt to changing operating conditions. 
Once the optical flow is calibrated, we can continue to use filtered 
measurements from each sensor to estimate the quality of data from optical 
flow and wheel encoders. These quality estimates are critical for determining 
when to trust data from sensors that are performing well and when to reject 
data from sensors that aren’t. 
 



CEVA MotionEngine™ Navigating the Complexities of Robotic Mapping  

8 Copyright © 2021 – CEVA®, Inc. Rev. 1.0 

2.6 Characterizing Characteristics 
Now that we understand the core concepts, we need to select the right 
sensors. One strategy is to choose sensors that fall within your desired 
tolerances based on the listed mins and maxes in the datasheet. But it would 
be ideal to have a comprehensive look at the sensor characteristics and map 
out these anomalies to better understand how to work with or around them. 
The best way to account for the negative sensor characteristics is to study 
them with data! An ideal system for this would require a number of features 
to be helpful for sensor analysis. It would require a large amount of data 
collection and unique permutations of position, operating mode, temperature, 
and more to characterize the sensor qualities we’ve discussed. This 
automated data collection system would require: 

• A statistically significant number of sensors 

• Custom PCBs to communicate with these sensors 

• Equipment to iterate through permutations of 
o Position 
o Operating mode 
o Temperature 
o Humidity 
o Magnetic field 

• Data collection and analysis tools 

• External storage to log the data 
The permutations are arguably the trickiest part of this system to setup. 
Single axis rotations can be stepped through with a precision gimbal. Putting 
that single-axis gimbal perpendicular to another allows full tri-axis motion. 
Operating mode can be changed through communication from each PCBs 
processor. Put these boards and gimbals in a temperature-controlled chamber, 
and you can modify temperature at the same time. An environmental 
chamber can artificially age these boards with humidity, and a Helmholtz coil 
can be used to change magnetic fields. Add in a computer to run these 
systems, log the data, and the software to analyze it, and you have a full 
sensor characterization system. 
While the system is complex to setup, the results provide insights that are 
well beyond what any datasheet says. For instance, if we revisit the ZRO 
characteristic, you can see its relationship with temperature over all the 
sensors tested. 
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Figure 2-6 Example variations in ZRO - Temperature relationship 

Each line in the data above depicts the effect of changing temperature on 
ZRO for a single sensor (all sensors are the same model). Each sensor 
behaves differently as temperature changes. Some are strongly positive, 
others negative, some are less influenced by temperature. But all of them 
have different ranges of effect. 
The same level of detailed data collection can be done with the other 
parameters (offset, gain, skew, rotation, noise, non-linearity) with varying 
conditions of temperature, voltage, aging, and mode. Some of these effects 
can be modeled and compensated, and some reflect limitations that dictate 
the performance limits of your system. One must carefully weigh sensor 
characteristics against external factors (like cost and integration effort) to 
make the best selection for your robot application. 
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3. Tracking Success 
After sensors are picked and the system is put together, testing is necessary to 
prove out navigation algorithms and ensure consistent high performance. But 
how do you measure performance? 
In the case of a ground-roving robot, its localization algorithm needs to 
accurately track its location, while other algorithms help it achieve its larger 
function. The algorithms designed for navigation and those fulfilling a 
robot’s objective are meaningless without proper direction. 
This is especially true of a cleaning robot that needs to cover an entire surface 
to finish its job. This principle applies to all land-roving robots, not just 
vacuums. The more accurate its mapping, the faster it finishes its job, and the 
happier the end user. A hospitality robot can lead visitors to the proper 
location quickly and without incident. Accurate movement from a large 
warehouses’ robots means that customers are getting their products that much 
faster, and at scale. 
Since wheeled robots tend to move in straight lines, heading accuracy and 
heading drift are strong metrics to improve. Heading is only part of the 
equation, however. Heading is a component of where the robot is going, but 
where it ends up is the most important. Measuring trajectory error will help 
us understand how accurate our state estimation really is. 

3.1 Measuring Up to Specifications 
We’ve decided on measuring heading and trajectory error. Great! But now 
we need a truth to compare to our robot’s outputs. In the case of tracking 
motion, we’ve found flexibility, accuracy, and precision using an IR-based 
camera system. It’s the same technology used for movie motion capture and 
in robotics labs around the world. 

 
Figure 3-1 Robot motion capture 
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3.2 Life Imitates… the Test Environment 
To ensure our robot’s success, it should be tested under conditions similar to 
its intended deployment environment - whether that’s a mock warehouse, 
mock hospital, or mock living room. Environments vary in where objects are 
placed, the length of hallways, changes in flooring, magnetic fields, and 
temperature. Ensuring that your test environment can cover these types of 
changes builds a more confident and robust solution. 
For example, CEVA’s robot vacuum testing is done in a mock living room 
based on an international standard. This very specific standard contains 
multiple pieces of furniture, changes in flooring, inclines, bumps, and even 
requirements for what is on the walls (this is relevant for VSLAM robots). By 
using this set of obstacles and settings, we can collect heading and trajectory 
data for the same scenarios that one would see during use. 

 
Figure 3-2 Robot vacuum test room 

3.3 Expecting the Unexpected 
As we mentioned in Section 2, inertial sensors are affected by temperature 
changes and these effects lead to heading error. The end use case 
environment will vary within a certain temperature range. Additionally, when 
our automated robots go out into the real world, they will literally run into 
issues outside of our test environment. Humans or animals will bump into it 
and the paths it takes might be filled with more obstacles than we model.  
Testing needs to reflect these scenarios to be robust. The more iterations, the 
more complete our picture, and the better we can tweak our algorithms.  
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An example test plan might include the following tests: 

• Baseline – changing temperatures within expected range inside the 
test environment  

• Bump – adding sudden orientation change or displacement to emulate 
incidental bumps 

• Obstacles – increasing the number of objects and disruptions 

• Longevity – increasing testing run-time to emulate use in an industrial 
setting 

Ideally, you want to run each of these tests multiple times on multiple testing 
platforms to gather as much data as possible and increase confidence in your 
work. This is obviously more costly and complex if you are testing the whole 
robot. With our focus on sensors, CEVA tests multiple sensors riding on the 
same robot to get as much data as we can. This allows us to track heading 
relative to truth with multiple sensors and glean more insight into how the 
base and outside factors affect their performance. If you’re seeing a pattern 
here, it’s because we like our data. The same principles we use for our sensor 
characterization are present in our testing as well. 
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4. Analysis and Conclusions 
4.1 Reading the Lines 

Data is nothing without the proper analysis, but with careful curation we can 
optimize our robot’s tracking performance. For instance, with our 
comprehensive test plan, we can look at how fast the robot’s perceived 
heading is drifting away from the heading measured by our motion capture 
system. You can miss valuable insights if you only summarize heading 
accuracy with a few numbers (like the heading difference at the end of each 
trial), because sometimes there can be large errors that are later cancelled out 
by other large errors, or maybe one result was good except for a brief glitch. 
So instead, we examine the error growth rate at each moment in time (e.g., 
over a rolling 15s window) and treat each of these as a separate data point. 
Then we plot the distribution of these error growth values for each trial in a 
CDF (Cumulative Distribution Function) as seen in the example below.  
Looking at the plot (lines to the left are better here), we can easily compare 
the median performance vs the worst case or other percentile and identify 
outliers.   

 
Figure 4-1 CDF of multiple algorithms over different conditions 

This helps us determine which sensors and algorithms run with less heading 
drift than others and show us how to tweak the values for higher accuracy. 
We perform similar analysis while looking at trajectory error. It can be 
measured in a few ways: 
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Figure 4-2 Trajectory error metrics 

• Absolute error compares the end points of the perceived and actual 
trajectories independently. This allows you to see the accumulation of 
heading and distance error over the course of a long trial. 

• Relative error adjusts the two datasets to the same starting point over 
each measurement window. This isolates the accumulation of 
previous errors from the error growth arising from heading error.  

• Reoriented relative error accounts for translation and rotation 
differences at the start of each measurement window. This isolates the 
overall error growth per unit distance from previously accumulated 
errors. This is the most useful metric for identifying the source of 
trajectory errors, which appear as “hot spots” in the reoriented relative 
error. 
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Figure 4-3 Relative error distribution for a variety of fusion methods and 

sensor conditions 

4.2 Conclusion 
The more complex the machine, the more understanding needed for each part 
the whole. Ensuring that you get the best sensors for your robot, making the 
right test plan, collecting data, and finding insight in the analysis is an 
intimidating endeavor. Hopefully, this paper has shown the complexity and 
impact of having the right tools in your arsenal. 
However, if this process sounds overly complex for dealing with the sensors 
of your robot, you’re in luck. CEVA has spent nearly 20 years studying and 
characterizing sensors to produce feature-packed sensor fusion solutions. Our 
dynamic calibration algorithms deal with ZRO and ZGO over varying 
temperatures in real time so you don’t have to think about them. Gyroscope 
scale is easily corrected with our per-device calibration algorithms. And our 
interactive calibration algorithm minimizes sensor drift to significantly 
reduce drift in low cost sensors in robotic applications.  
As of writing, we’ve released a new robotic dead reckoning product called 
MotionEngine™ Scout that intelligently fuses the data between wheel 
encoders, an optical flow sensor, and IMU. This fusion from Scout also 
cross-calibrates each sensor using information from the others. Scout 
achieves trajectory accuracies 5-10x better than optical flow sensor or wheels 
alone. Our sensor fusion simplifies the complexities of working with various 
sensors, and instead provides OEMs a simple interface for their robot 
navigation. 
With our thorough testing, comprehensive data collection, and advanced 
analytics, CEVA has the sensor expertise to exceed your sensor needs. If 
you’re interested in learning more about our robotic offerings, services, or 
any other application specific features that CEVA provides, please contact us. 
 
 

https://www.ceva-dsp.com/contact-us/
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5. Glossary 
Table 3-1 defines the acronyms used in this document. 

Table 3-1: Acronyms 

Term Definition 

CDF Cumulative Distribution Function 

IMU Inertial Measurement Unit 

SLAM Simultaneous Location and Mapping 

VSLAM Visual SLAM 

ZGO Zero-G Offset (Accelerometer bias) 

ZRO Zero-Rate Offset (Gyro bias) 
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