

CEVA IP Portfolio

Licensing & Royalty Business Model: upfront licensing fee plus royalty on each CEVA-powered chip shipped

CEVA's Unique Sound Processing Offering CEVA

DSP

- ► CEVA-TeakLite-4 for Ultra Low Power
- CEVA-X2 for high performance

Software

- ClearVox package for front-end voice pickup
 - Noise reduction
 - Beam forming
 - Acoustic echo cancellation
- Audio/Voice Codecs

AI

- NN Libs
- DSP NN Compute library

CEVA offers a comprehensive sound solution

Headset Trends (earbuds, headphones, hearables ...)

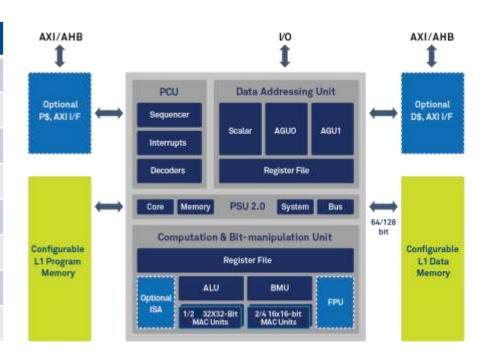
➤ Transition from 3.5mm jack creates opportunity for premium audio solutions for the powered (wired/wireless) headsets: ~1 Billion headsets in 2021

CEVA Sound DSP Headset Solution

TeakLite-4 DSP

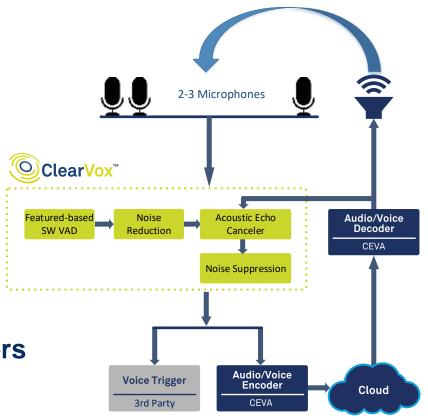
- Low-power always listening
- High performance voice pre-processing
- ▶ 1-3 mics noise reduction and beamforming
- Active Noise Control
- Voice trigger/commands/biometrics
- ► Low power audio playback / Audio over BLE
- Sound Neural Networks (audio analytics)

Ultra-Low-Power and High performance Wireless headsets, Hearables , IoT



TeakLite-4 DSP Architecture

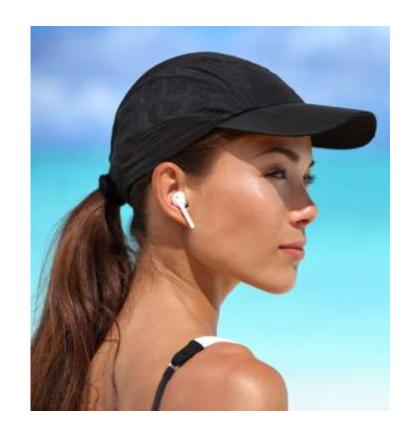
Feature	Configuration
Pipeline stages	10
SIMD [bit]	64
DSP arithmetic data types [bit]	16/32/64/72
MAC [16x16-bit]	2 or 4
MAC [32x32-bit]	1 or 2
Single Precision Floating-Point	Optional
Data Memory width [bit]	64 or 128
Dedicated audio instructions	Yes



World's Most Deployed Low Power 32-bit DSP Family

CEVA Sound Software Headset Solution

- ClearVox Voice Front-end Software
 - 1. Noise Reduction
 - Multi channel Noise Reduction including SW VAD and Beamforming
 - > 2-3 MICs
 - 2. Acoustic Echo Cancellation
 - Mono and Stereo
 - 3. Single channel Noise Suppression
 - Suppresses the residual noise
- Audio and Voice Encoders/Decoders



ClearVox Headset Noise Reduction

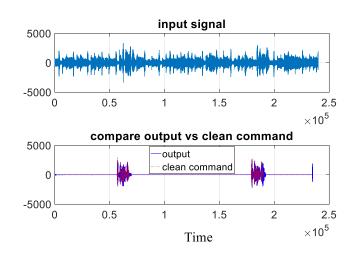
Supported features

- Configurable 2-3 microphones
- Configurable microphone topology
- SW VAD (Voice Activity Detection)
- Fixed Direction of Arrival
- Dynamic Noise reduction
 - Beamforming
 - Different noise environments: white, directed, diffused, etc.

ClearVox Headset Acoustic Echo Cancellation

Barge-in enabler

- Barge-in during music playback
- Barge-in during personal assistant response


Clean voice call enabler

Intelligible voice in BT hands-free mode

Supported Features:

- Configurable tail length
- Mono/stereo echo cancellation
- Advanced double-talk detector
- Music and Voice

CEVA Sound NN Headset Solution

- "Sound NN at the edge" is a major trend
 - In Headsets it is used for environmental sound sensing and speech recognition
- NN use-cases on CEVA TeakLite-4 sound DSP
 - Voice trigger
 - Voice commands
 - Voice biometrics
 - Sound sensing
 - Customer proprietary NNs
- All NNs employ similar concept
 - Deep learning offline training with massive data sets
 - Edge inference of NN to classify/filter real time signals

CEVA is offering NN lib and SW framework

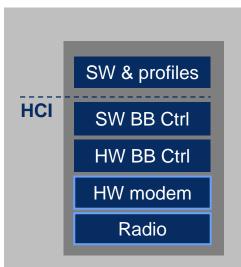
CEVA Sound NN Compute Library

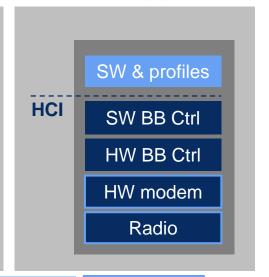
- CEVA Neural Network Library is a set of highly optimized neural network building blocks
- ► CEVA Neural Network Library is carefully composed to facilitate easy building and deployment of neural networks, with an **emphasis on audio data**
- Library functions are called "layers" as they can be connected hierarchically
- Sound neural network is a set of connected layers

CEVA sound NN lib enables deep learning headset applications

CEVA Bluetooth Headset Solution

- Unique and comprehensive offering for both Bluetooth Low Energy (BLE) & Bluetooth dual mode (BTDM):
 - Baseband controller
 - ► Software protocol stack
 - Modem & Radio
 - Integrated platform with embedded RISC-V processor
- Full BLE software stack with a comprehensive list of profiles
 - Including mesh and audio over BLE
- HCI BTDM software, interoperable with 3rd party BTDM host stack and profiles from:
 - ▶ BlueDroid: Android / Wear / Things
 - BlueZ: linux
 - IVT, OpenSynergy, A&W, etc.





CEVA

Partners

CEVA or Partners

Audio over Bluetooth Dual Mode

- ▶BT Dual Mode remains the optimum choice for wireless audio
 - ► Audio-over-BLE still an evolving technology
- ► CEVA's RW-BTDM5 is the only viable Bluetooth 5 Dual Mode IP available
 - ▶ 30+ Bluetooth Dual Mode design wins, many in mass production
- ► Additional challenges (& opportunities) now for headset type products
 - ▶ Power consumption: forwarding audio to peer earbud (aka TWS) is expensive
 - ▶ Left / Right audio synchronisation: sub-40us
 - ► CEVA has engaged in customized "Eavesdropping" type designs for a number of customers

One Stop Shop Ultra-Low-Power Sound Solution CEVA®

Silentium – Noise control across industries Silentium

Wearables

Appliances

Automotive

HVAC

Transportation

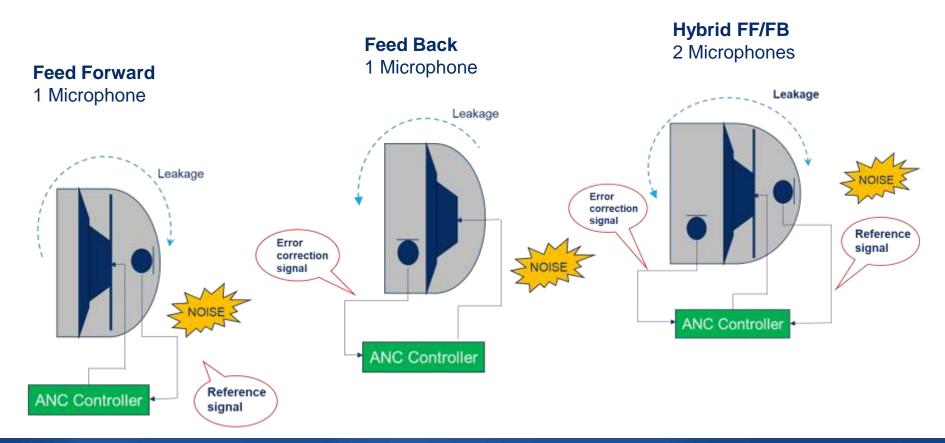
Military

Heavy Industry

ANC Signal Processing Controller

ASIC

- Resource constrained performance
- Limited flexibility during the design process
- Scalability via BOM cost
- Limited system integration with Voice features


DSP IP CORE

- Scalable Performance
- Optimal integration with Audio
- Optimal system level BOM cost
- Few design decisions upfront
- Silentium proprietary simulation Tools

Controller Architecture

ANC Behavior and Performance

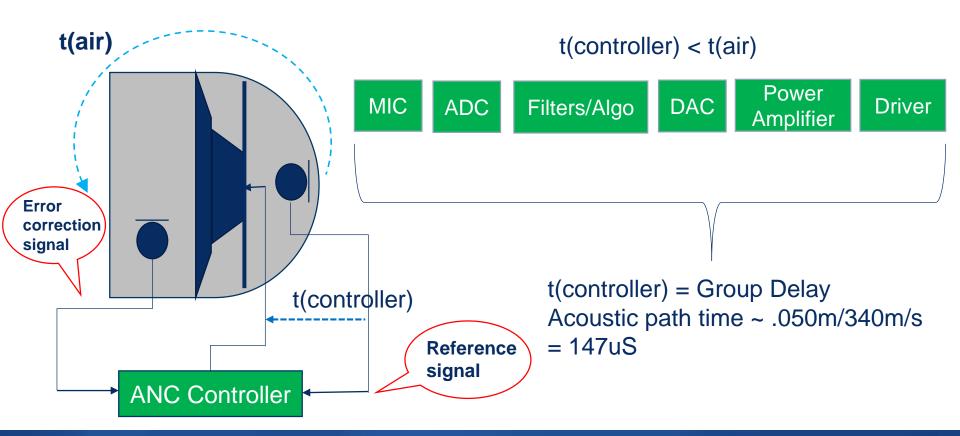
Dynamic adaptability

- Acoustic leakage from tips/foam
- Dynamic noise sources, noise location, Noise PSD

Static adaptability

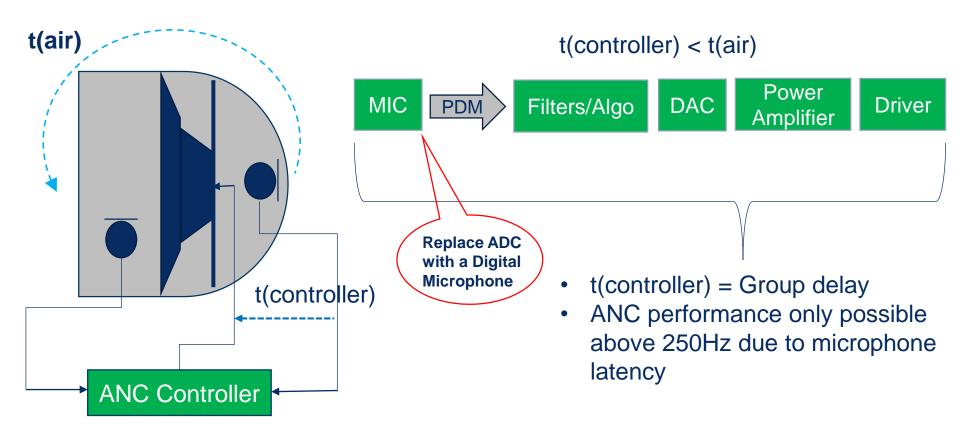
- Acoustic human physiology variations
- Audio source/type variability, music, voice

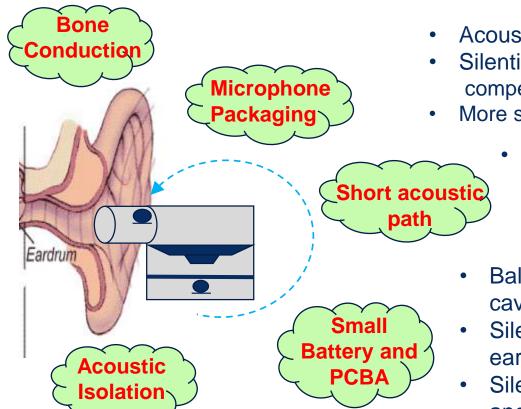
Environmental adaptability


- Airplane, Train, etc.
- Office

Control Interfaces

- Device user Interface Inputs
- Phone App
- Sensors
- Voice
- IoT


Necessary Conditions for ANC

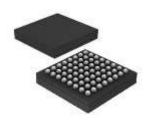

Necessary Conditions for ANC

Challenges of Intra-Aural ANC

- Acoustic path time ~ .025m/340m/s = 74uS
- Silentium predictive algorithms are required to compensate for short Acoustic Path time
- More stringent ADC/DAC requirements
 - Silentium offers maximum broadband performance with Feed Forward only designs, in case two microphones cannot be packaged
 - Balanced armature drivers have sealed cavity, but lack in Freq response
 - Silentium assists SOC designers with Inear specific requirements
 - Silentium can provide full acoustic design and component selection services

Milestones for an ANC ready SOC

SOC Product feature definition


SOC
Target Critical
Performance
Parameters

FPGA or initial test samples

SOC Production Release

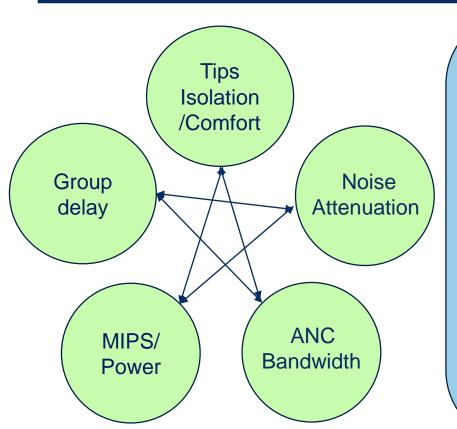
Microphone typeanalog/digital Mechanical form True Wireless Audio sources ADC/DAC Voice/VPA Support Boot modes IP Protection ADC Latency/SNR I2S Port Speed Clock domains Memory DAC/PA SNR, THD Hardware accel. End Of Line programming Initial Library
verification
Loopback testing
Early performance
demonstrators
Speed & Group
delay testing
Audio Integration
Initial MIPS & power
modes

Production intent
ANC Lib – V&V
SOC Final Customer
specifications and
parameters

End Product – Development Milestones

Product features and EU definitions

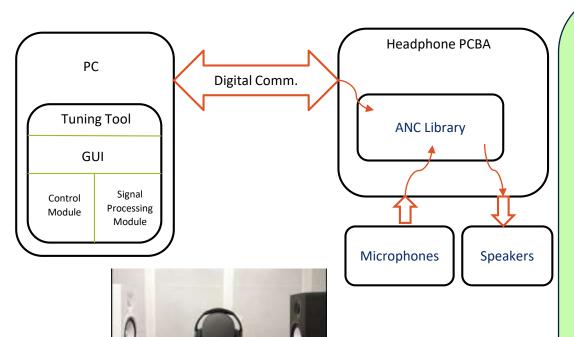
Acoustic components selection and modeling


Digital Audio Architecture Release/ Alpha build

Audio sources for ANC. Power requirements. Voice features. Use cases/UI. Audio Targets. ANC Targets. Wireless Features. Driver & microphone Characterization. Design of tips/foam. Acoustic cavity modeling. Target ID design. Initial performance simulation. Clocking, digital audio design.
Target PCBA,
electrical architecture.
Prepare ANC library for production.
ANC performance in target ID.

End-Of-Line
calibration strategy.
EOL equipment
integration.
Final mechanical
tolerances.
Critical characteristics
measured, verified
Final acoustic
calibration.

ANC Performance Continuum



- Predictive Filters are employed to mitigate longer group delays.
- "Soft" ANC unmatched capability in design and flexibility
 - MIPS vs. design goals adjustment.
- Flexible architectures balance SOC and end product goals.
- Tight tips, foam cushions and bands provide isolation, but can reduce comfort. Broadband ANC can balance performance and comfort.

Calibration and Characterization

- Acoustic path modeling.
- Simulation environment for ANC performance prediction.
- Performance Simulation and Coherence Evaluation.
- Proprietary calibration strategy for dynamic noise sources.
- Ability to compensate for leakage in open design (no-tips)
- SOC/PCBA serial connection to tools required.

Steps to a successful customer demonstrator Silentium

- Identify demo goals and constraints: ANC, Audio, MIPS, power
- ► ANC library optimization with an FPGA version of a target SOC
- ▶ Identify necessary external components ADC, DAC, PA, etc.
- ► PCBA level integration
- ▶ Drivers, APIs, BSP for the full system with ADC, MICs, FPGA, etc.
- ANC ready acoustics/mechanical headphone prototype. Can also be an existing off the shelf product with quality acoustic components
- ► ANC acoustic calibration for a target acoustics/mechanics
- Silentium supports you to deliver a complete ANC solution to the end customer

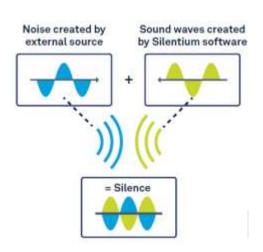
Silentium ANC Key benefits

Low MIPS and Memory

Full OEM/ODM product support

Flexible Algorithms

Broadband Performance


Strong Partnership with DSP core IP

CEVA & Silentium ANC Solution

- Based on CEVA ultra-low-power sound DSP
- Fully adaptive broadband ANC technology
- Modular ANC solution: Feedforward/Feedback/Hybrid
- Suitable for multi-noise environment
- Joint ANC demo is available

Robust and fully integrated ANC solution for headset designs

Igor Kofman: igor.k@silentium.com
Director Product Management & Business Development, North America

www.ceva-dsp.com September 2018